s Scytl

Innovating Democracy

Scytl iVote 2.0 System

Response to “NSWEC-7 Final Report”
by David Hook and Carsten Schirmann, January 2019

Public release
June 2019

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

Scytl — Secure Electronic Voting

STRICTLY CONFIDENTIAL when contains “Draft” designation

© Copyright (2019) — SCYTL SECURE ELECTRONIC VOTING, S.A. All rights reserved.

This Document is proprietary to SCYTL SECURE ELECTRONIC VOTING, S.A. (SCYTL) and is

protected by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are
protected by patent applications.

No part of this Document may be: (i) reproduced whether direct or indirectly, temporary or permanently

by any means and/or (ii) adapted, modified or otherwise transformed.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

Revision chart

Version Date Primary Author(s) Reviewed by Description
1.0 11/6/2019 Security and Product Technical Writing team For publication
departments
www.scytl.com 2

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

Table of contents

A 1 4 oo LU o] 4 o Y o SRR 4
2 Major Findings (Part 3 of the Final Report)...........vieiiiiiiiiiieeiie e, 5
2.1 (O3 1= 01 S o [P UPRR PRSPPI 5
2.2 JavaScript, unused fFUNCHONANLYuvuiiiiee e e s errrre e e e 5
2.3 JavaScript, TODO MATKEISeiieeiiiiiiiiie et s et e e e e e e e e e e e e e s et e aaeeeeessnnrrnneeaees 6
2.4 [RS RS I) 1 A TR0 1] o AN o o F R PPRRRR 6
2.5 (0701010011 011 oo [P TP P PP OPPPPOPPPPN 7
2.6 Entropy and randomness in the JavaScript ClIENt ... 7
2.7 COUING ST ettt ettt 10
2.8 Potential OVEITIOWeeiiii e e e e e et e e e e e e e e e e e e e e aann 10
2.9 Y= Tel 0) A (=10 = PP 11
2.10 Missing arguments from calls to hash-functionscccco e, 12

3 Detailed Findings of Functional Matching and Verifiability Analysis (Part 6 of

the FiNal REPOIT) oo 13
3.1 EleCtion KeY GENEIALIONcoiiiiiiii ittt e et e et e e e b e e 13
3.2 VOter AUTNENTICALIONeeiiiiiiiie ettt e e 14
3.3 Yo (SR OF= 1S i g To T D= = U1 14
3.4 Cast-as- intended VEIIfICALIONcoiiiiiiii e 17
35 Phone voting VErfICAtiONccooiiiiie e 18
3.6 (G110 1] oo PP PR PUPRT 18
3.7 DT T PP PP UPPPPPTUPRRN 20
3.8 (D =Tol Y o] 1T] o TP PP TPPPPPTTPRRN 23
3.9 Proof Of COrTECt DECIYPLIONveiiiiitiie ettt ettt e et e e e st e e e naeeeean 24
A ATTACHEA ... e 25
4.1 ANNEX 1 — PRNG FIAWE. ...ttt 26
4.2 ANneX 2 — PRNG goId StANAardoocueiiiiiiiieiiiiiee et 27
4.3 ANNEX 3 = PRING SCYH ..ottt e e e e e e e e 28
www.scytl.com 3

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

1 Introduction

This document is intended to provide technical responses to points found in the review performed as
part of the iVote Refresh project by the DEMTECH GROUP and released in January 2019 on the iVote
System. The source code review that is responded to in this document is “NSWEC-7 Final Report” by
David Hook and Carsten Schirmann, January 2019 (the “Final Report”).

The responses provided in this material include a combination of development and security-related

information, intended to shed some light on topics raised.
To assist readability these! are treated in the same order as the Final Report.

The feedback gathered is valuable and useful for the improvement of the Scytl software and can enrich
areas such as the source code and technical documentation. Some of these findings have been
considered in the version of the voting system used for the 2019 election and others are taken into

account for future releases of the system.

Raised items will continue to be reviewed and included as part of patches produced from time to time

as part of a continuous improvement program for Scytl software.

Summary of report:

It is the view of Scytl that whilst the Final Report did find areas of interest and discussion for both the

reviewers and Scytl, nothing significant was found relating to the security and integrity of the system.

Scytl acknowledges that areas of the code are not easy to review and have provided challenges to
reviewers and hopes that information shared in documentation has assisted reviewers to understand

the design and implementation of the system.

Scytl has work to do regarding code upkeep, which we acknowledge, and continue to do as an ongoing

activity. Other matters raised by the reviewers are described in the response herein.

It is important for readers to note that the Final Report was completed on an early release of the

application, and not the final version used in production in the election.

1 This document includes only responses for those points raised in the Final Report that require a clarification from
a technical and/or security perspective.

www.scytl.com 4
I — -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

2 Major Findings (Part 3 of the Final Report)

2.1 Client side

The client side code is heavily dependent on the use of JavaScript. In some cases the files
have been obfuscated, possibly in order to reduce their size. The use of obfuscation has made
the review of the code harder but not impossible. There are tools for removing obfuscation
which we have used and we are assuming as such tools are readily available it should clear

the obfuscation would not affect the security of the system.

Scytl response:

The client-side code is dependent on the use of JavaScript because it needs to be executed on

browsers.

The Javascript is not obfuscated, rather it is minified?. The aim is size reduction and does not
serve a security purpose. Security is provided by means of other elements.

2.2 JavaScript, unused functionality

The JavaScript appears to be full of unused functionality. We recommend getting some clarity
on this and having any excess code removed. The issue with unused functionality is that as
the JavaScript is readily downloading, an adversary is more likely to find exploits, with unused

functionality as it is also often not tested or maintained sometimes providing an easier way in.

Scytl response:

Code cleansing and/or refactoring are both activities included in the Software Development Life
Cycle document which depicts all the development phases and areas of responsibility. In that
document, refactoring is typified as part of the Development team regular tasks. This team uses

Sonar to detect any unused code.
Some of the libraries are used in multiple Scytl projects and so are included in the code base.

In addition, the Security department runs its set of tests oriented to detect possible exploits and

coordinates actions to solve them when required.

2 https://en.wikipedia.org/wiki/Minification_(programming)
www.scytl.com 5

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

2.3 JavaScript, TODO markers

The JavaScript code contains 39 “TODO” markers. While this is not a sign an issue in itself,

we would recommend that any existing TODO are checked to make sure they have been
forgotten. Again as with unused functionality, incomplete code can also provide a lever for

exploit by an adversary

Scytl response:

e The Development team has a method to track TODO’s included to the code. This process
consists on adding a bullet point in a Technical Debt JIRA ticket for each of the new TODO that
is added.

e At the same time, the team performs code cleansing and/or refactoring as part of software

continuous improvement.

2.4 Misuse of the Voting App

An authenticated adversary can send invalid votes using the voting app by calling standard
JavaScript functions with wrong keys, and then cry wolf and subsequently allege incompetence

or a cyber attack. Both cases are possible, but any case will be a nightmare for NSWEC.

Scytl response:

It is potentially possible for authenticated adversaries to send invalid votes to the system, as long as the
invalid vote is correctly signed, and a valid Schnorr proof is created. In other words, an adversary can
encrypt a vote with invalid data, but cannot do it using invalid keys or generating incorrect proofs. Note

that these invalid contents will be always detected if the vote is verified.

In this case an authenticated adversary can send one invalid vote using the voting app by calling
standard JavaScript functions with wrong keys. This vote will be detected as invalid when decrypting
the content of the Ballot Box, and so will not be taken into account in the result of the election. Please
note that a verification of this vote through the Mobile Verification Application will result in an error, so

the voter will be aware that his vote is invalid.

This is the equivalent of sending an invalid or null ballot in a traditional election. Considering the NSW
election rules, this attacker will only be able to cast a single vote with a pair of credentials (iVote Number

and PIN), thus it cannot be used to attack the system by adding multiple ballots to the Ballot Box.

www.scytl.com 6
| e —

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

2.5 Commenting

The Java/JavaScript code base does not exhibit a clear and consistent commenting policy. It
would be so easy for the code to reference back to the design documentation and vice versa.

This weakness makes manual code reviews unnecessarily cumbersome

Scytl response:

e Acknowledged. The commenting policy will be reviewed.

2.6 Entropy and randomness in the JavaScript client

It was not immediately clear what kind of entropy the JavaScript code uses to create
randomness. The JavaScript code uses cryptolib-js-securerandom, which indicates that robust
sources of randomness are included. We could not identify code that would conduct a entropy
quality assessment. After further discussion and assistance from Scytl it appears the
JavaScript RNG has been analyzed using both the Dieharder test suite and the NIST Statistical
Test Suite. Both the test suites used are definitely appropriate for the task. We would strongly
recommend the NSWEC acquire copies of these assessments as the quality of the entropy is
a cornerstone of the security of the overall system, and it is highly likely that anyone querying
the quality of the system will want such reports to be made available. In fact, it really would be
a testimony to the quality system if such reports were available on short notice for later

reviewers as well

Scytl response:

In order to provide some clarity about the entropy and randomness in the JavaScript client, an
explanation about the used tools was provided to the reviewers about the how entropy is collected,
randomness generated and how it was tested to ensure the statistical distribution of the process is

random.

The JavaScript client implements a Pseudo Random Number Generator (PRNG) based on the Fortuna?®
proposal from Schenier to produce values with strong randomness. The client also implements several
entropy collectors to feed the buffer of the Fortuna PRNG. The amount of entropy provided from each
source and the proper implementation of the PRNG was considered in the implementation to ensure
the quality of the randomness produced. For this purpose, in this phase, the PRNG output is tested

against statistical analysis tools intended for such types of PRNGs.

As mentioned in the report, the tools used in this testing are the Dieharder test suite and the NIST

Statistical test suite:

% Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, Inc., New York, NY, USA, ledition, 2003
www.scytl.com 7

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

The Dieharder test suite (http://www.phy.duke.edu/rgb/General/dieharder.php) has
been used to analyze the output of the PRNG. This tool is a well-known and highly reputable Random
Number Generator testing suite, intended to test generators. It includes tests from the original Diehard
Battery of Tests of Randomness, as well as tests from the Statistical Test Suite (STS) developed by the
National Institute for Standards and Technology (NIST) and tests developed by the author of the
Dieharder test suite.

e From the set of tests available in the Dieharder Suite, those which need an overwhelming
quantity of data (more than 4GB, some tests even require 800GB) have been discarded, as well

those that are not recommended by the author.

e Discarding those sorts of tests, does not affect the quality of the testing, as there were only a

small number of tests of such kind and some of them would overlap others.

e Tests which supported different configurations have been performed using different input
parameters.

In total:
e 78 Statistical tests have been performed, on the output of the PRNG.

e 400 instances of the PRNG have been created with 400 different seeds. For each one of the
instances, 10.000 256-byte arrays of random values have been generated sequentially using
the PRNG. Each of the 256-byte arrays of random values have been used to create 64 32-bit
unsigned integers.

e Therefore, 640.000 32-bit unsigned integers have been generated for each seed, and a total of
256.000.000 random integers compose the output dataset to be tested against the Dieharder

test suite.

Values generated with the PRNG initialized with different seeds have been used in order to test, not
only that the values sequentially generated by a PRNG instance have the expected properties
(corresponding to a sequence of random numbers), but also to test that different instances of the PRNG

(initialized with different seeds) generate uncorrelated random numbers.

In order to have a reference of what should be expected from the tests on the implemented PRNG, two

other PRNGs have also been evaluated in the same way*:
1) A flawed PRNG which generates sequences of correlated random numbers.

2) A PRNG which is considered as a “gold standard” by the author of Dieharder and that passes

all statistical tests perfectly.

4 As a proof of fact and as Annex to this material, find attached to this document a complementary list of security
tests performed by Scytl: Annex1.dieharder_tests prng_flawed, Annex2.dieharder_tests_prng_gold_standard
and Annex3. dieharder_tests_prng_scytl — Refer to Section 4 of this document.

www.scytl.com 8
| -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

These two are tested against the PRNG that the user of the test suite wants to analyze, in this case

Scytl’s. This is the practice recommended by the own author as a standard.

As expected, all the tests have been successfully passed by the implemented PRNG, as well as by the
“gold standard PRNG”. However, the flawed PRNG has failed most of them.

Each of the test output files has a table with multiple columns and multiple rows.

e Each row represents a different test. If two rows have the same name it means that different

input parameters were used.

e The first columns correspond to different datasets and show the p-value of the tests on the
datasets. The other columns are functions of the previous columns in order to analyze the
results of the tests.

When executing a test on a file of random integers, the result is a number between 0 and 1, called the
p-value. In order to define whether a test succeeds or fails, one has to set a significance level (usual
values range from 0.1 to 0.001): if the p-value is smaller than the significance level consistently in

many executions of the same test over different datasets, then the test fails.

This is why one of the columns of the files is the maximum p-value: if it is smaller than the significance

level, then the test fails.

We have set a significance level of 0.005, but it is easy to see that, for both Scytl's and the “gold
standard” PRNG, the p-values are much higher than 0.005, which means that they pass the tests with

significant success.
On the other hand, as one would expect, the flawed PRNG fails many of the tests.

Another issue to be considered is that the p-value is a random variable and, as such, the same test
over different datasets should produce noticeably different p-values. Therefore, in each file we add a
column which lists the difference between the minimum and the maximum p-values for each test, and
another column which lists the variance of the p-values. Then, we compare the difference between

the maximum and minimum p-value and make the test falil if this difference is smaller than 0.1.

Both Scytl’s and the “gold standard PRNG” succeed with this test as well, in particular such difference
is much bigger than 0.1 for all the tests. On the other hand, the flawed PRNG has many similar p-

values, and as a consequence it fails most of the tests.

Test results for the flawed, standard and Scytl's PRNG are provided as Annex of this document:
e Annexl dieharder tests prng flawed.pdf
e Annex2 dieharder tests prng gold standard.pdf

e Annex3 dieharder tests prng scytl.pdf

www.scytl.com 9
| -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

Information collected by the entropy gathering system is accumulated and, when required, it is used to
initialize the PRNG. The estimations about collected entropy have been done based on the following

article https://crypto.stanford.edu/sjcl/acsac.pdf.

2.7 Coding style

In some parts of the code, a concept of Job is defined to exploit concurrency and to administer
computations elegantly and effectively. Such programming patterns contribute to efficient
execution of programming tasks, but they make it more difficult for the reviewer to interpret and

evaluate the quality of the code.

Scytl response:
e Scytl acknowledges that the Job concept is used widely, and that the complexity of the task can

bring some code ambiguity.

e Scytl will review the usage of the pattern by adding comments when and if code interpretation

is difficult.

2.8 Potential overflow

In the code [SecondCommittmentGenerator.java, line 55-56], a product of two potentially large
numbers is computed, which might lead to a potential overflow. If triggered, this problem would

mostly likely crash the application during mixing.

Scytl response:
Regarding the potential overflow, we explained why this situation cannot be achieved and for a better

understanding, a deeper explanation follows:
e Currently by defaultm =1; n =sizeEncryptedBallots [BGParamsProvider.javal

e Considering that NSW population is under 8 million, which is less than 223, the overflow cannot

be triggered unintentionally even if sizeEncryptedBallots is set to the number of

participants.

e As for the intentional code modi cation, we assume that any adversary who has the power

to modify code and/or election settings would exploit more e cient attach vectors.

www.scytl.com 10
| -

https://crypto.stanford.edu/sjcl/acsac.pdf

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

1|// from MixingService. java

2 | final int sizeEncryptedBallots = encryptedBallots.getBallots().size
O

3 | BGParams bgParams = bGParamsProvider.getParamsForGiven (
sizeEncryptedBallots);

4

o

6 | //from BGParamsProvider.java
7 | public BGParams getParamsForGiven(final int partitionSize) {
8

9 |// if partitionSize is not in the bGParams. json,
10 | // use default BGParams params

11 | ...

12 |}

13

14 | //By default BGParams params are:

15

16 | private static BGParams createDefaultBGParams(final int size) {
17

18 | BGParams bgParams = new BGParams () ;

19 | bgParams.setM(1);

20 | bgParams.setN(size);

21 | bgParams.setMu(2);

22 | bgParams.setNumIterations (0);
23 | return bgParams;

24 |}

2.9 Secret key reuse

The code is very clear that the secret election key is reconstructed for the purpose of mixing
and decrypting the ballots. What kind of mechanisms are in place to prevent secret key reuse?
Once the secret key is constructed it may be stored and stolen. Also, since the secret election
key is being constructed, once lost, it can be used to decrypt the original ballots breaking vote
secrecy. This renders mixing a nice but rather ineffective mechanism to protect the secrecy of
the vote. (see [4], Section 2.6.3.1)

Scytl response:

The main mechanism that is implemented to protect the key is the secret sharing scheme, where the
key is broken into shares and then destroyed so that it does not exist in as a complete key until needed.
Even though the election key is divided into shares and stored on separate smartcards, at the time of
generation and reconstruction for its usage, this key is present in the server memory as a single key
and only during the time that the key is used to decrypt and generate the decryption proof of the votes.
After this, the key is eliminated and is to be reconstructed again in the case that it is needed. This means
that, should the server where the key is used is compromised, the key could be stolen only at the

decryption phase and until the decryption process finishes.

This is the reason why the steps of election key generation and ballot decryption are made in an air-

gapped server avoiding the possibility of an online attack. In addition, these two steps are made during

www.scytl.com 11
| e —

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

a ceremony supervised by auditors and observers to ensure the procedure is correctly performed. This
is a combination of the form of the software and the process under which it must be used supporting the
security.

2.10 Missing arguments from calls to hash-functions

While reviewing the generation of the parallel shuffle proof, we observed a deviation between
documentation [4], page 15, and the implementation. The calls to hash functions in Prover.java,
and Verifier.java appear to be be applied to fewer documents than required. (see [Verifier.java,
line 141-143], [Prover.java, line 114-116], [prover.js, line 96], [verifier.js, line 84]).

Scytl response:
All hashes in proof generators and proof verifiers are computed according to the same rule (please find

extracts below).

//Prover.java

Exponent hash =

generateHash (publicValues , preComputedValues.getPhilDutputs (),
datal;

e L b e

ffVerifier. java
calculatedHash = calculateHash(publicValues, computedValues, datal;

[

/fprover.js
var hash =
3 | generateHash(group, publicValues, preComputation.phiOutputs, datal;

[

//verifier. js
var calculatedHash =
3 | generateHash (group, publicValues, generatedValues, datal;

[

www.scytl.com 12
1 e —

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3 Detailed Findings of Functional Matching and Verifiability
Analysis (Part 6 of the Final Report)

These response to questions are generally based on the system architecture.

3.1 Election Key Generation

The secret key is generated and then split into different shares (see also [3] Page 74).
Eventually, the election private key is reconstructed. There are two problems with this
approach. First, the system may be used with the same private election key for several
elections. Second, the private election key is already known before the election and may be
used by an adversary (who is assumed to be in possession of the key) to decrypt ballots as
they arrive and it is reconstructed after the election which would an adversary allow to decrypt
the unshuffled and uncleansed ballot box (assuming the adversary has access to the

database).

Scytl response:

As explained in the section dedicated to the Secret Key reuse, all the actions dedicated to the election
key generation and the ballot decryption, are performed in an air-gapped server to avoid malicious online
attacks.

e Responding to comments related to the Credential Manager code and to clarify, Credentials
are assigned at Institution level, hence the credentialID depends on the
institutionAlias. With this relation it is easy to identify to which Institution the Credential
belongs to. Similarly, the credentialID depends on the apiKey since the apiKey dictates

the combination of Channel and mode.

e The construction of a spare credential is used in the computation of the credential ID. This is
created by the Credential Generator and imported to the Credential Manager. The current data

of a spare credential is transparent for the Credential Manager.

e Regarding the hard-coded username password combination, and to clarify, the mechanism
based on Scytl IWT (JSON Web Token) is applied in order to secure endpoints in importing
credentials to the Credential Manager. The CustomUserDetailsService is called after the
JWT has been validated, at which point the user is considered authenticated. Credential
Manager does not hold a list of usernames/password for its Back Office, so the login is
delegated to the Voting Back Office, which is where the JWT is generated. If the Credential

Manager receives a valid JWT, the user is considered authenticated.

e All these explanations will be included in detail to the relevant document to avoid further

misunderstanding.
www.scytl.com 13
| I

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3.2 Voter Authentication

We reviewed the source code that implements voter authentication. Most notable, we could
not verify the parameter to the PBKDF2 key derivation function. In order to be able to identify
locations in the JavaScript code, we needed to deobfuscate and pretty print it. The line numbers
refer to the line numbers in the deobfuscated file. The JavaScript code is also structured in

blocks. For simplified access we refer here to to the block numbers as well.

Scytl response:

The pbkdf2 generation uses a 16 byte key, which is equivalent a 128 bit key.

The authentication transform type used in pnyx-govlab component (e.g. Edmonton, MAEE)
and its description, will be included in the relevant documentation to avoid further

misunderstanding.

The remaining pnyx—-govlab modules have been decommissioned in this version and are

planned to be removed on the following iteration, hence they are not included in any document.

3.3 Vote Casting Details

Section 2.4 of [4] and section 5.4 of [1] appear to describe different mechanisms for
constructing a ballot. After consultation with Scytl it became clear that Section 2.4 of [4] was
the mechanism being used in the iVote system. It would be helpful to later reviewers if the the

description in [1] was either removed or brought into line with the one in [4].1l.

Scytl response:

The pertinent documents will be updated following the suggestions provided regarding the Ballot
construction, naming in files and documents, authentication methods, and so on.

Regarding the functionality for “castVote”, and as explained in previous sections, the voting
server and the rest of the backend services are designed taking into consideration that the
JavaScript voting client is not a trusted component and that an invalid vote can be received.
The document reference will be reviewed.

Regarding the public election key encryption, and to clarify, the crypto service depends on

the certificates downloaded by the getCertificates endpoint. Then, the team assigns the

www.scytl.com 14
I — -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

selected crypto module to the crypto service. This information in detail will be disclosed in the

relevant document.

e As a quick explanation about the sendvote method, this passes the response to the Receipt
Service that will validate the response. This information will be depicted in detail in the relevant

documentation.

e The field "password" allows adding an extra challenge for voter authentication. This can be
configured during the phase of credential generation, by adding some voter's personal
information (e.g. date of birth, postal code, etc) as part of the string (user + pin + password) that
will be derived in the client during voter authentication in order to get the credentialD and the
PKCS12 password. When this extra configuration is not used then the password field is set to
the hardcoded value of "password" for all the voters. This extra configuration is not used in NSW

iVote. In this case the field is hidden from the UI.
e Regarding [ball.candidate.js, line 200], this module is planned to be reviewed in future revisions.

e As a response to the “Dead code” comments, it is relevant to remark that the
getEncryptedOption is used by the Cipher Service through the encrypt, hence it relies on

the module of the crypto used in the election.

e The initialization vector description will be updated and included in the relevant document to be

aligned to implementation, also the format of the credential will be described.

e Regarding the “secret”’, the saveSecret is set to false in order to delete it from the object where
it is saved and it is not stored along the encrypted ballot. The object that has saveSecret set
to true is used to create the secret and is not used directly to generate the encrypted ballot. The
secret, previously generated, is stored in a constant used to create and verify the proofs. Then
the gamma and phis from the first encrypted elements is taken to build another encrypted
element object without any saveSecret set to true. From that, we start generating the

encrypted ballot. We can confirm that the secret is not stored along the encrypted ballot.

e To the references made about “Imprecise Contract”, this is a Cryptolib related issue. The code
implemented should validate the preComputation object passed. This validation would point
to its interface without marking whether it is undefined or not. It could be defined although the

object type is different from the standard one and could generate errors.

e Inrelation to the hash computation, it is important to explain that the hash generator computes
hash over the set of public values as well as over additional data. Public values contain only the
proof commitment, while additional field ‘data’ defines all other public parameters that can be

used for hash computation [hash-generator.js]:

www.scytl.com 15
| -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

1 P

2 |* Gemerates the hash.

3 =

4 |* @function generate

5 | #* Omemberof HashGenerator

6 | * Oparam {ZpGroupElement []}

T|# publicValuaes The public values.

8 | * Oparam {ZpGroupElement []}

9 | = generatedValues The generated wvalues.
10 | * @param {Uint8Arraylstringl

11 | = data Auxiliary data.

12 | * @returns {Uint8Array} The generated hash.

13 | =/

14 | this.generate = function(publicValues, generatedValues, data) {
15 | digester_.update(elementsToString (publicValues));

16 | digester_.update(elementsToString(gensratedValues));
7 |digester_.update (data);

18

19 | return digester_.digest ();

20 |}

For example, “data” for the Schnorr proof is defined as follows [schnorr-proof-handler. js]:

1 if (voterId && electionEventId) {

2 data = VOTER_ID_PREFIX + voterId + ELECTION_EVENT_ID_PREFIX +

3 electionEventId;

4 }

Regarding the use of the method "createEnvelope ()" with the encrypted vote, of the

SecureMessageHelper, it is needed to clarify that this is not the one used for a Verifiable Mixing
election type, the one used by iVote. Instead, the SecureMessageHomoHelper is loaded (see line 500
in method "createvote ()" of file "restCalls.js") which has a specific "createEnvelope ()"

method.

The method observed by the reviewers is the one used for the non-verifiable mixing case, based on

RSA encryption, and that is not used in iVote.

www.scytl.com 16
| L I——

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3.4 Cast-as- intended verification

Internet Voting Verification

Just as the voting app, the verification app consists of an embedded JavaScript. Interestingly
enough, both JavaScript programs ivapi-0.8.0-min.js (voting app) are ivapi-0.7.0.js (verification
app) are equal in substantial parts of the code, it almost feels like the voting app runs a new
newer version of the JavaScript library than the verification app. This is very concerning as
maintainers could easily get confused, and developers may already have done so. The
JavaScript code is started from the Android App or the iPhone app, with “nsw-vote-verification”

[MainActivity.java, line 12], which is also our entry point for the source code review.

Scytl response:
e Code analysis has been conducted on a beta version when the software versions were not

aligned. The software versions are aligned in the final release.

e Regarding the field isforVerification in the login, this parameter indicates whether the
login is performed to vote or to verify the vote. In the second scenario, there are certain
operations that are not needed and are skipped for performance reasons. To achieve that, when
the login is performed in the Voter Portal the parameter is not passed. When the login is

performed in the Verification app the parameter is passed to true.

e The lines of the code that indicate that randomness is computed from the seeds that was
obtained from the QR code, are in the method "initDecrypter (randomness) " of the

"VerifiableMixer.js". There, a new PRNG is created with the seed passed by parameter.

e As detailed in the documentation provided, in order to decrypt the vote using the randomness
derived from the seed in the QR code, it is necessary to exponentiate the public key to the
negation of the randomness and then multiply it by the appropriate part of the encrypted
message (the part that is the public key exponentiated to the randomness and multiplied by the

message, a.k.a. phi value in the code).

This code can be found in the method "decrypt ()" of the file "prng-decrypter. js" of the

module Scytl1ElGamal.

e The “isforVerification” parameter does not open iVote up for a timing attack. This just
differentiates a call of login for voting or for validating the vote. It does not provide information
to allow the login credentials to be inferred. The only information that could be inferred if the two
variants of the call have a difference in time is if the call is authentication for voting or for

validating a vote. It is equivalent to have two different authentication calls, one for each case.

www.scytl.com 17
| -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3.5 Phone voting verification

The software provided to us did not contain the essential modules for the IVR system that

would allowed us to review the phone voting verification. packages2/default/config.json

Typos Different default fields with a name ending in “length” are misspelled. This could be

problematic if the names are spelled correctly when referred elsewhere.

Scytl response:

At the time of this security review, the IVR component was not complete nor operational.

3.6 Cleansing

The source code contains different modules that refer to cleansing. Some functionality can be
found in the pnxy-govlab/mixing module, the other in the pnxy-goviab/cleansing. This is

confusing. The code should perhaps be refactored

Scytl response:

e These modules are considered isolated services that can work independently. A study will be
conducted to identify the need for refactoring in time as part of continuous improvements to the
code.

e Regarding the cleansing implementation concern of not being software independent, taking as
reference the definition® “A voting system is software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in an election outcome”, then
cleansing is software independent as it is a deterministic process. We would like to suggest an
ideal way to audit it, which is in line with its essence and characteristics. Because the cleansing
is a deterministic process and should always output the same result given an input, the ideal
way to audit the cleansing results is to implement a parallel cleansing application and confirm

that the results are identical in both cases.

e To respond to the doubts raised about the specifications presented in the relevant document,
when the votes are fetched, the last vote of each one of the voters is identified and is the one
that will be counted during the tally process. The flag used to identify the last vote from a voter
is called lastvote. Additionally, for voters whose votes are not to be counted can be
deactivated, which will prevent their vote from being counted during the tally process. The

certificate validation is using the CAvalidationService which does check the certificate

° Rivest, Ronald. (2008). On the notion of 'software independence’ in voting systems. Philosophical transactions. Series A,
Mathematical, physical, and engineering sciences. 366. 3759-67. 10.1098/rsta.2008.0149.
www.scytl.com 18

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

chain. Along with this explanation, the team will review the relevant document to ensure the

specifications provided are aligned to this description.

e Inthe Class conversion point, a code refactor will be considered to detect possible errors as the

best solution to avoid failure in keys.

e Duplication of code and other elements such as the sql.append are subject to code refactor
consideration. In the case of the sql.append it may be removed and the append itself would

continue being chained.

e As aquick explanation about the Cleanser functionalities, when the votes are fetched from the
database, there is a conditional statement that consider the last timestamp (which will remove
any duplication). The case when final table.creation date = (select max
(creation_date) from secure messages where voter id=final table.voter id and
election id=final table.election id) then 1 else 0 end as is_lastvote. As the
duplicated vote is not even loaded into the application (during the cleansing), there is no

auditable vote for such scenario.

e To the question related to the homomorphic counting method being part of the code base, Scytl

development is done towards a product that can support multiple and different security models.

e The section 2.6.1.3 of the document [4] Voting Protocol Description, underline that the validity
of the certificate chain or the X509 certificate is indeed not checked here but the Channel and
Mode information included within the certificate. The certificate validation uses the

CAvValidationService which does check the certificate chain.

e The signature of the vote is checked in the method "validate ()™ of the class

VoteValidation inthe package com.scytl.mixing.validation.

In any case, the mentioned part of the document will be reviewed in detail to ensure there is not

confusion in terms and processes.

e The Receipt verifier inherits its “verify” method from “Baseveri fier” which indeed does not
add any new polymorphic behaviour. This will be planned to be refactored in the future and the

“BaseVerifier” renamed.

e To ensure that the information related to the number of votes that were cast and the reference
“TOO MANY VOTES” is included appropriately in both documentation and source code, the

VoterValidation, line 53 and section 6 of the relevant document will be updated.

www.scytl.com 19
| -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3.7 Mixing

The mixing module implemented in the iVote-system appears to be new and under
construction. Many error cases are not implemented completely, and judging from some of the
comments in the code, it is not clear what the correct functionality is. In the form the code is
now, it is possible for it to crash with an an “Unmatched exception” during mixing (as opposed
to dying gracefully). The mathematical foundations of the mixer code are extremely
challenging. The paper by Bayer and Groth present different versions of their mixing algorithm,

and judging from our review, the one that is implemented is not the one that is described in [4].

Scytl response:

Given that the mixing is executed asynchronously if one error happens, the exception is caught
then, the exception is logged, and the mixing status updated. Finally, the exception is thrown

again so that spring gracefully kills the thread.

Due to the complexity of the paper produced by Bayer and Growth, the information provided in
the relevant documentation may not have been precise. However, their shuffle argument is the
one followed in this system. A review of the documents has been conducted to improve the

information provided in the production system.

Mixing/ mixing-core

TODOs allow the team to identify areas of the platforms that can be improved in a future iteration
and may be part of the refactoring work the team will perform, bearing in mind that the feature

is already implemented and meeting the requirements.

Mixing/ commons

Responding to the point raised regarding the mixing code lack of exception management, it is
needed to explain that the Gjosteen EIGamal (decryption method) validates the input parameter,
after that, the algorithm serializes only the data into some JAVA objects. In the Gjosteen
ElGamal (encrypt method) an object is instantiated based on an array, so if the array length is
0, the object will reproduce the '"right" answer regarding the current length O;
GjosteenElGamalRandomness -> as this class cannot be instantiated without having the "r"
instance variable with a value, the other methods should work fine. The Exponent already
validates the input parameters inside its own constructor, ensuring a right value for the "r". As

we just need a correct exponent in this class, the methods will not have any further problem.

Mixing/ mixnet- shuffle

The code in ElGamalShuffler.java generates permutation, shuffles ballots and re-encrypts them,

as presented in this snip:

www.scytl.com 20
| e —

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

LOG.info ("Generating permutationmn..."};
permutation = permutationGemerator.generate(numBallots);

LOG.info ("Permuting ballots...");

final List<Ciphertext> permutatedlistEncryptedBallots =

permutator.createPermutatedlist (encryptedBallots. getBallots (),
permutaticon) ;

O s QO bD e

] =T

8 | shuffledEncryptedBallots = new ElGamalEncryptedBallots(
permutatedlListEncryptedBallots);

LOG.info("He-encrypting ballets...");
reEncryptedEallots =

3 | reEncrypter.reEncrypt (shuffledEncryptedBallots,
conpletedRandomExponents , preComputations);

| S

In relation to the comment made regarding the security proof, it provides a perfect completeness of non-
interactive SHVZK, which is a requirement for proving that the Mixnet is secure. For example, mix-nets
based on a Randomized partial checking provide strong evidence of correctness, but not the complete
correctness since the security is mainly proven heuristically.

Mixing/ proof generation

Resetting m is an explanation that will be included in the technical documentation.

1|// Note: m must be set to 2 in this proef when the m of
2 |// the Hadamard proof is 1, but only in this case

3 |if (this.m == 1) {

4 |this.m = 2;

¥

By default, m =1 and n =N, however Zero Argument computation requires the generation of an element

. o m iz
~a0 and then computing @ = Do @',

To avoid problems with insides, it was adjusted from the beginning. The code follows the logic described

in the Bayer and Growth paper (specifically Zero Argument 5.1).

1 |final PrivateCommitment [] cZercArgd = new PrivateCommitment [m];
2 | System.arraycopyf{ca, 1, cZercArgh, 0, m - 1};
3 |cZeroArghA[m - 1] = new PrivateCommitment (ExponentTools.

getMinusiVector(n, groupOrder),
4 |new Exponent (groupOrder, BigInteger.ZERD), comParams,
multiExponentiation);

In reference to the class “Multiexponentiator”, this is described in scytl-math package.

. T _ [m(@)N . .
According to the paper of reference, b= {am)}izl‘, the code described below gives exactly the same

output, but transformed into a matrix.

www.scytl.com 21
| e —

10
i1
12
13
"
15
16
17
18
19
20
21
2

BRE NBRE B

gee

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

//from FirstCommitmentGenerator. java

protected Exponent [J[] initExponents(final StateHarvester harvester
) {
return MatrixArranger.transformPermsutationToExponentMatrix(
permutation, order, m, n);

//from MathUtils. java
public static Exponent[] productsSequence(final Exponent challengeX
, final int power) {

final Exponent[] result = new Exponent[power];
Exponent acummulated = challengeX;

for (int i = 0; i < result.length; i++) {
result[i] = acummulated;
acummulated = acummulated.multiply(challengeX);

}

return result;

final int pover = m ¢ n;
final Exponent[] vecX = MathUtils.productsSequence(challengeX,
pover);

// and computation itself

private static Exponent [][] computeB(final Exponent[] vecX, final
Exponent []J[] aExponents, final int m, final int n) {

final Exponent[]J[] b = nev Exponent(m]([n];
for (int i = 0; 1 < m; i++) {
for (int j = 0; § < n; j++) {

final int k = aExponents[i)[j).getValue().intValue();
b(i)[j] = vecX[k - 1);

}
}
return b;
}

The document that describes the voting protocol (NSW Electoral Commission. iVote Voting System,

Voting Protocol Description) will be updated to incorporate implementation details based on multi-

dimensional matrices instead of one-dimensional vectors.

www.scytl.com

22

3.8 Decryption

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

We started the

implementation of the decryption algorithm is implemented. The main part of “ProveDec” (see
[4], page 15) is implemented in Prover.java. The implementation matches the decryption

process as described in documentation.

review with AbstractBallotDecryptionService.java which contains the

Scytl response:

e As a future improvement Scytl plans to work on a glossary to the align naming used in

documentation and code.

e More details about validity checks will be included in the design documents. In this sense, the

following explanation will be added:

The function validateDecryptionProofGeneratorInput verifies that all values provided as input

(publicKey, ciphertext,plaintext, privateKey) are not null, lengths of public and private

keys are equal, lengths of ciphertext and plaintext are publicKey + 1:

private veid validateDecryptionProocfGeneratorInput(
final ElGamalPublicKey publicKey, fimal Ciphertext ciphertext,

final ElGamalPrivateKey privateKey)

1
2
3 | final List<ZpGroupElement > plaintext,
4
5

throws GeneralCryptoLibExcepticn {

16 | "E1lGamal public

7 | Validate.equals (ciphertextlength, publicKeyLength + 1,

18 | "Ciphertext length", "ElGamal public key length plus 1");
19 | Vvalidate.equals (plaintextlLength, publicKeyLength,

20 |"Plaintext length", "ElGamal public key length");

21 |}

Validate.notNull (publicKey, "ElGamal public key");

8 | validate .notNull(ciphertext, "Ciphertext");

9 | Vvalidate .notNullOrEmptyAndNoNulls (plaintext, "Plaintext");
10 | Validate.notNull (privateKey, "ElGamal private key");

11 |int publicKeyLength = publicKey.getKeys().size();

12 |int privateKeyLength
13 |int ciphertextlLength
14 |int plaintextLength = plaintext.size();

15 | Validate.eqgquals (publicKeyLength, privateKeyLength,

privateKey.getKeys () .size();
ciphertext.size();

key length", "ElGamal private key length");

e The use of “c” in the code, instead of “h”, is widely extended as it refers to “challenge”.

www.scytl.com

23

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

3.9 Proof of Correct Decryption

We are not totally clear on the decryption proof overall as the library code appears to be written
to support several kinds, however it does appear that VerifiableMixer.js calls schnorr-proof-

handler.js and does so with options.voterld and options.electionld set.

Scytl response:

The Proof of Correct Encryption is computed during the ballot generation process and sent along with
the encrypted ballot to the server. In such case, the Schnorr proof is needed to convince the verifier that

the prover known encryption exponent was used for the ballot generation.

For privacy reasons, the plain text is not included, to avoid that anyone can access the content of the
encrypted ballot by simply verifying the proof.

A Schnorr proof is a proof of knowledge of a discrete logarithm. The only place where it's generated in
the client is in the following line (231) of the VerifiableMixer.js

const generatedProof = this.schnorrProofHandler.generate (secret,
ciphertext.gamma, { voterId: tokenUsername,

electionId: ballot.electionlId, preComputation: this.precomputation });

This proof of correct encryption ensures that an encrypted vote from another voter is not reused. In other
words, it's used to make sure that the voting device knows a secret r such that the first component of
ciphertext is g”'r. After the proof is formed, the encrypted vote is digitally signed together with the proof
and its associated metadata using the pair of Voter Signing Keys obtained during the authentication.
The encrypted vote, signature, and proof are sent to the Voting Service. This signature prevents any
attempts to modify the encrypted vote.

The proof of correct encryption is verified both when the vote cast arrives at the voting server and when
the cleansing operation is performed during the counting. The output of the cleansing does not contain
this proof, only ciphertexts (the votes without signature, proofs or any other information), thus after this
step the proof is not forwarded in the next steps of the counting. In order to make sure, that this vote
has not been changed during the cleansing, mixing and decryption processes, an auditor should check
the correctness of the cleansing process (this process is deterministic and can be reproduced) and verify

proofs of correct mixing and decryption (which are not the encryption proofs we are discussing here).

www.scytl.com 24
I — -

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

If we include selected plaintext into this proof, everyone (Voting Service, someone who intercepted the
message, someone who reads the database) would be able to say which message is inside without

breaking the encryption.

As for the proof of correct decryption, that is generated during the decryption phase (takes place after
mixing), it is based on the Chaum-Pedersen protocol, which is schnorr-like indeed. A non-interactive
challenge for that proof is computed as follows: h = H(pk|c2/m|gs|(c1)s|‘DecryptionProof’). The code

can be found in ProofUtil.java

4 Attached

Annexl.dieharder_tests_prng_flawed
Annex2.dieharder_tests_prng_gold_standard

Annex3. dieharder_tests_prng_scytl

www.scytl.com 25
| -

4.1 Annex 1 - PRNG flawed

Test
diehard_hirthdays
diehard_rank_32x32
diehard_rank_gx8
diehard_hitstream
diehard_opso
diehard_ogso
diehard_dna
diehard_count_1s_sir
diehard_count_1s_byi
diehard_parking_lot
diehard_2dsphere
diehard_3dsphere
diehard_squeeze
diehard_sums.
diehard_runs
diehard_runs
diehard_craps
diehard_craps
sts_monobit
sis_runs
si=_serial
si=_serial
si=_serial
si=_serial
si=_serial
s1=_serial
s1=_serial
s1=_serial
st=_serial
st=_serial
st=_serial
st=_serial
st=_serial
st=_serial
si=_serial
si=_serial
si=_serial
s1=_serial
s1=_serial
s1=_serial
s1=_serial
s1=_serial
s1=_serial
st1=_serial
st=_serial
st=_serial
st=_serial
si=_serial
si=_serial
sis_serial
rgh_bitdist

rgb_min_distance
rgb_min_distance
rgb_min_distance
rgb_min_distance
rgb_permutations
rgb_permutations
rgb_permutations
rgb_permutations
rob_lagoed_sum
rgb_lagoed_sum
rgb_lagoed_sum
rgb_lagoed_sum
rob_lagoed _sum
rob_lagoed _sum
rob_lagoed _sum
rob_kstest_test

www.scytl.com

Dataset 1
0.33450304
1]
0.00001743
011651672
1]
1]
o
0.01210429
o
0.11302024
0.01ED6155
0.33046129

1]
0.0443276L
0.00646814
0.01974727

1]

1]
0.00043534
0.00022B72
0.00043534

0.0005538
0.170470B2
0.11655054
0.14687302
0.00261153
0.00000013
0.0006LBES
0.01361231
0.00000004
017775473
0.04528359

0.125263

0.4434365
0.0090B179
0.02203047
0.53188409
062725511
0.00000027
0.000001ED

0.0707013
0.00001048
0.00196E7S
0.00569204
0.014546B8
0.25864521
0.0034033L

0.0047E48
0.014TOEET
0.00002466
0.000B9238
0.00015526
0.0120803L

o

o

0.7744005
0.976TBE24

1]
0. 48777746

1]
0.74547738
0.31216706

o

o

o
0.00000029
0.00000002

0.0008511

(=]
ﬂﬂﬂﬂﬂﬂﬂﬂgﬂ

e
OOOOGOGO%O

[=]
UUUUQQQQEQ

Dataset 2
033450304
[+]
0.0DDOL3TE
011651672
[+]
[+]
o
0.01196604
o
011393024
001696155
033046129

[+]
D.04432TEL
0.0DB4EELS
DOZ13B11T

[+]

[+]
000030333
0.0D0ZET49
0.00030333

QLDDOS538
012470832
0122200933
014697302
D.0D315361

QUDOODOOL
0.0DDELEES
001361231
0.00D00D0
DATTT4TE
004628359

0125283

OL44343E5
0.0020BLTY
004037358
053198409
062725511
0.00D0003E
0.000001ES

QLOTOMDL3
000002325
0.0D196ETS
000617585
001454688
025664521
0.00395209

QLD04TE4E
D.014TOEET
0.000024E66

QLDDOESLE
0.00012407
0.00165043

o

o
D.ELTLIZTS
0.BB405865

[+]
0.BBB5E133

[+]
0.BEDGOZEZ
D.31216T06

o

o

o
0.00000029
0.00000001
000111126

Dataset 3
033450304
o
0.00001373
0.11851672
o
o
o
0.01170431
o
0.06930%886
0.01896155
0.33046129

o
0.04432751
0.00e46814
0.01145415

o

o
000044869
0.00033218
0.00044859

0.0005538
014520654
0.14011707
0.14897302

0.0031427
000000035

0. 00000009
000000189
0.0T3577E1
000001048
0.00196875
000565204
0.01454688
025864521
0.00180725
0.0047548
0.01479687
000002456
0.0002479
0.00001953
000391937
o

o
0.72860411
0.98143907
o
0.78325899
o
0.93198138
0.4451237
o

o

o

0. 00000029
0. 00000001
000064902

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

Maximum Passes the test? P-values max difference Max difference > 0.17

0.33450304
1]
0.00001743
0.11651672
1]
1]
o
0.01210429
o
0.11392024
0.01696155
0.33046129

1]
0.0443276L
0.00646814
0.02138117

1]

1]
0.00044869
0.00039218
0.00044B69

0.0005538
0.17947082
0.14011707
0.14597302
0.00315361
0.00000035
0.00061B65
0.01361231
0.00000004
017775473
0.04529359

0.125283
0.44343B5
0.00908179
0.06972B847
0.53198409
062725511
0.00000038
0.000001E9
0.075577EL
0.00002325
0.00196875
0.00617585
0.014546B88
0.25864521
0.00395009

0.0047648
0.01479687
0.00002466
0.00089238
0.00015526
0.0120803L

o

o

0.7744005
0.98143507

1]
0.89956133

1]
0.93198138

0.4451237

o

o

o
0.00000029
0.00000002
0.00111126

[=]
ﬂﬂﬂﬂﬂﬂﬂﬂ%ﬂ

TRUE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE

TRUE
FALSE

TRUE

TRUE

TRUE
FALSE

TRUE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE

TRUE
FALSE
FALSE
FALSE

TRUE
FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE
FALSE
FALSE

TRUE
FALSE
FALSE

TRUE

TRUE

TRUE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE

TRUE
FALSE
FALSE

TRUE

TRUE
FALSE

TRUE
FALSE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

o
o
0.0000037
o

0.00487631
0.00001277
o
000048381
o

o
0.00215184
o

o

o
000054448
0.00013563
0.010389388
o

o
D.1S5726775
D.08738042
o
0.411783a7
o

0.186504
0.13295664

oooooooooQ

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE
FALSE
FALSE

TRUE
FALSE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

1]

1]
4.56333333333333E-012
1]

1]

1]

o
4.22231426333332E-D08
o

0.00D660TLTE

o

=1 == =]

2.8089463004 133 3E-005
1]

1]
6.45573203333334E-00%
6.85551343333333E-009
B.45573203333334E-00%
o

0.000TE35361
0.000150B%5T

o

0.0000000E
1.86333333333333E-014

ooooooog

0.0005501435

o

o
2.14333333333333E-014
o
7.92613307203336E-008
5.43576333333333E-011
o

0.00DDODDTE

1]

1]

1.247TEST 1DGE-DOE

o

o

o

1.06061402BE-DOT
0.00000000S
2.99197B60360333E-005
o

o

0.D06542T198
0.D02416B588

1]

0.0451B7TOED

1]

0.D0B55B63TE
0.D05B924594

o

o

o

o
3.33333333333333E-01T
5.50948040333333E-008

oooooocooog

26

4.2 Annex 2 — PRNG gold standard

Test
diehard_hirthdays
diehard_rank_32x32
diehard_rank_gx8
diehard_hitstream
diehard_opso
diehard_ogso
diehard_dna
diehard_count_1s_sir
diehard_count_1s_byt
diehard_parking_lat
diehard_Zdsphere
diehard_3dsphere
diehard_squesze
diehard_sums
diehard_runs
diehard_runs
diehard_craps
diehard_craps
st5_maonobit
SIs_runs
s15_serial
sts_serial
st=_szerial
s1s_serial
s15_serial
sts_serial
sts_serial
sts_serial
sts_serial
sts_serial
st=_serial
sts_serial
sts_serial
sts_serial
sts_serial
st=_serial
st=_szerial
s15_serial
s15_serial
sts_serial
st=_szerial

rgb_min_distance
rgb_min_distance
rgb_min_distance
rgb_min_distance
rgb_permutatons
rgb_permutatons
rgb_permutations
rgb_permutatons
rgb_lagged _sum
rgb_lagged _sum
rgb_lagged _sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rob_kstest_test

www.scytl.com

1

099575492
0_ZBO13871
0.594 79483
022555747
039586790
093179189
026214334
D.B3EB4TO3
037319457
D.9BTZT196
02641448
0.BESS608
074505404
033411705
067451811
062976547
077624612
0.14877516
094758213
O6TEITTEL
D.6TOZLTIE
D.6ES0833
064305006
001219171

022721434

001449781

09756774
019319628
010714529
O ASEID0UZ
036027734
033656151
009045581

020883537
0.2B635812
0. 76318588
042669416
0.03301835

015063187
0.B3034583
0. 7TEEE0TT3
0.D6ZST1ET

0.96052TTZ
099373971
071945967
045262192
053500929
026662755
050955471

0985545

0. 9F3ETLLE
099193504

0213549
01540069
092450383
0. 76939431
099349613
083791169
048501301
034534903
092673262

080245161

081774599
0.6THE3I664
075007495
0.T3533ZZ3

Dataset 4
044700022
006521245
062361209
052422479

0172124
071767606
061199437
036510674
0.017TTEBLE

099617488
053814626

014268044
085194741
0.97Z30541

0.6TEEEZ11

0.1 1895606

Masinmum
099525492
06674016
086480613
083641327

097165707

084516992

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

Passes the test? P-values max difference Max difference > 0.17

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0. 7BE41955
0.60218915
035104582
0.B36147T91
0.91401571
071273076
04613625
07940706
0.033T1ETE
0.06552512
0.ES0TS295
06184642
0B3434024
052265460
08272596
0.95301257
0.7OB446TE
054109742
0.660Z3ED
054375776
0.59134316
0.5Z3LEEET
0.52507T866
040317681
016422173
0.6ESEE001
O.BT2E32TD
0.87161445
045513482
0BT 73305
OB157TS0
0.ED0ES03L
0.EO334818
0.90125927
0.B1017TTDE
032724775
06533451
D.E1963Z34
084 53Z0EE
095080052
0.120080972
063533475
0546505
072362544
055770423
045324723
0.B300401T
043009178
030861806
O.7E01TEST
O.37TTETTIL
072135772
0.BE3BETSS
095668697
0.90651086
O.B4TLIEZTS
O.5ET44602
0.77910913
O.B2741237
038668305
0.7380TTS3
0.8263557
0.7022TE43
05363458
0.BB2419T3
0.3B6B455E
0.2B3665T
048125873
O.7TESTT3SE
096760346
024230033
0.B5635292
063835756
0.69946320
D.5ZB4THE
0.TEIBEE11
0.70955916
072621386

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

Variance
0.0923537388
0.0536 1609062
0.0197TZ7T0824
0.0991960412

0.1101134349
0.0456 792955
0.11988405941
01644432652
0.1201 104008
0.0523162574
0.07e5818268
00502611196
0.0535T79766
0.045T04 3566
0.0455960065
0.0344936047
0.0052691105
0.0613377689

0.0187T681304
00721744146
0.0838255391

0.1709493923
01480499255
00027615176
0.0685436735

27

4.3 Annex 3 -PRNG Scytl

Test
diehard_birthdays
diehard_rank_32x32
diehard_rank_&x8
diehard_bitstream
diehard_opso
diehard_ogso
diehard_dna
diehard_count_1s_str
diehard_count_1s_byt
diehard_parking_iat
diehard_2dsphere
diehard_3dsphere
diehard_squeeze
diehard_sums
diehard_runs
diehard_runs
diehard_craps
diehard_craps
sts_monabit
sis_runs
sis_serial
sts_serial
sis_serial
sts_serial
ste_serial
sts_serial
sts_serial
s15_serial
sts_serial
ste_serial
sis_serial
sts_serial
sis_serial
sts_serial
s1g_serial
sts_serial
sts_serial
s15_serial
sts_serial
ste_serial
sts_serial
ste_serial
sis_serial
sts_serial
s1g_serial
sts_serial
sts_serial
s15_serial
sts_serial

rgb_min_distance
rgb_min_distance
rgh_min_distance
rgh_min_distance
rgb_permutations
rgb_permutations
rgb_permutations
rgb_permutations
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_lagged_sum
rgb_kstest_lest

www.scytl.com

Dataset 1
D.65742816

001241533

501
0.45181547
097185657

0.97485497

0.98610912

0.73780629
0.98388753
0.11573329
0.60051871
0.00284661
0.95274092
0.17646462
0.93975114
0.26248526
037724364
0.05001252
0.37759777
0.74347069
0.55696119
0.31302252
0.68362986

0.81668631
0.98844181
0.06765117

0.08528812
0.65225953
0.22859374
0.54505197
0.52726689
0.92210268
0.55414375

Dataset 3

0.87433827
091009904
056510347
099937068
076978152
054260133
0.68300486
060253836
0.78850822
0.10511838
0.96064534
0.07533222
0.45726064
0.06860969

0.23073288

0.2876228
0.44602301
0.80024859
0.72552142

05789413
0.86975624
088090315

0.7488526
061428642
0.82156774
036883662
0.82876527
0.42479004
0.80214072

0.9734374
0.29653277
099225811

06926179
094392242
0.67052706
0.16113796
096949434
0.34700663
013264761
0.09725073
062920392
099283992
071151915
0.48039872
082018865
0.09952428
0.04721747
057753008
055868076
005187334

021120255
068945852
0.79714769
0.79724349
090191758
0.72410759

0.19144578
016907518
0.57271633
0.27567839
0.35433845
0.82698827
0.35433845
058494362
044064081
058301318
098846578
0.26367356
0.57274157
0.11185108
061183420
0.72927355
0.27285100
0.37782507
098538439
0.29354721

058958195
0.91084135
096206833

0.9887102
0.54750539
077508586
0.85156160
0.97759748

0.41779648
0.68790102
0.59149841
021661858
0.76510376
0.06168118

08076999
0.99107600

0.2526295
080150228
0.72358192
0.41598244
0.72800841

0.7986548
084892352
060889001
0.75188848
0.79988408
027803484
0.02550344
0.19784399
0.22285196
0.70547632
0.06959658

Dataset 5
049734932
080775623
067045200
0.B3TTZB4E
0.74434375
083428947
063361468
002006871
084213445
0.2254751
077506181
0.99418613
0.B3163401
062301819
0.0206B581
011597268

081957836
050050534
091857836
0.54382560
053096086
010311147
0.B5042315
0.1B6TO6TZ
0.50430962
0.97B20643
065171041
082073004
0.79797264
060309875
099100863
0.B605E49L
087833027
059266562

0.8287241
0.44432134

0.4248439
040653065
DATEELET

0.0424656
033562096
0.647BADGEZ

0.8355101
050949096
013836832
0.42B54313
083091116
0.B5510336
077563519
0.BOISETAE
064874195
062005085
037607632
012648577
067447198
006152319
084570101
016093175
095506362
074667260
021557736
050650643

0.89255077
0.20048322
0.BB563341
000392844
000218311
019156426
040606033
000258400

0.B0O70584
0.26171073
00931568
0.973841
0.70892504
0.76711783
0.56670508
0.36600111
7767
0.20797148

01844985
0.09745369
0.33200536
0.360927514
068390964
0.55057443
0.04336503
0.35392264
0.15388887
0.38500676
0.86090164
0.57567811
0.93125838

040735509

05511425
D.91683936
025134305
021491817
037540118
083240768
021873724

0.6445686
057354691
D.65015506
037427656

0.8819782

0.92649195
01671129
0.52261006

047396237
0.0BEET209
017984061
0.79936596
0.73460591
015808047
0.59802597
0.90899888
067914825
012874305
0.66255888
0.35607959

02185125
0.03073007
0.92323087
0.47244809
0.872B7462
019184577

Dataset 9
0.61146317
0.47735722
084400059
0.27065239
0.67062052
0.4710806
026529544
0.62197755
0.56321448
0.7733542
099063525
0.65477535
090445387
0.00777327
0.63283509
035071318

0.23011128

0.4431076
050129291
050918868
050727596
031887267
0.21500981
064810434
0.24248926
039763886
0.76767706
0.24292291
029155285
037983216
0.20255688
034573778
0.63435083

0.5203258
096748065
0.28999255
0.55500467
0.26749339
0.75285964

0.2403196

0.9654656
054335745
099607207
0.83455882
0.43746056
0.40685958
0.67721001

0.4935335

0.4991796
0.76254664

0.9686358
064829131

0.6840353
0.36834934
0.72112025
003352064
0.13309981
0.21898084
0.98012144
0.73174153
079869333
0.66448242
075485295
0.42790975
052252542
095602811
0.62268703
061552621
0.27717129

Dataset 10
085345015
0.2304836
092551272
0.45293843
060940585
0.0389227
061543056
050850163
087043100
0.71266860
031414039
0.94895365
0.12727395
013667200
0.64586021

0.99158402
021841563
0.27257352
0.161384B6
095115411
079640676
091671726
0.12230573
0.14341535
099357352

0.8269209
077462244
0.40397098
088264019
0.77121568
087731830
029886495
066088154
0.09597231
099684463
DEEIE1ETL
079910845
0.21152993
0.77499784

0.9429079
051944956

089576600
0.70110281
054853370
088569538
055069366
0.04427679
0.99334106
057849642
059124919

04804671
051403019
039710922

0.9103435
052885202
0.229247B1

066089057
0.91235601
099255832
051393847
0.74221365
031235462
0.13283542
0.29900312
095403631

0.7718328
056936124

Dataset 11
0.39852511
0.47054183
0.90987020
0.16007045
06077432

0.41998422
0.74TBSTS6
0.60021267
0.87279309
0.02411245
0.49113602
0.25821118
0.45428441
0.53567732

03018207
0.11369389
0.95204215
0.865B6755
0.9BB69363
0.75821528
0.20007842
0.62736044
0.23816859
0.86361262
0.925B7058
0.34100736
0.34078306
0.71373235
0.6BBB07ES
0.02075923
0.312B9116
0.55200072
0.62284219
0.80154062
0.70B23828

05413312
0.07731653
0.31227086
0.99416077
0.19586022
0.97172036

0.65309804
0.76254920
0.25555974
0.76318001

0.06568014
0.91779991
0.60204912
0.82050578
0.04465943
0.25831464
0.57226635
0.23407459
0.43042765
0.67B38456
0.32280012
0.BOBTTTTT

0.52310069
0.64076936

0.97735722
092551272
099937068
0.90148754
0.98645119
0.97579864
0.97024182
099456558
0.97166083
0.99546742
099912885
0.98472051
0.82301819
0.96316475
091145507
0.99162421

0.87511678
0.992B4276
099156402
088162485
098869363
0.99016704
0.97765358
090430062
098440583
099860227
0.99002674
0.99357352

09027684
099100883

0.87731839
095167185
099840042
0.01628835
099684463
0.98B7182
0.974B5487
0.99416077
085156160
0.99225611
0994841
0.98610812
0.93091118
0.97032523
096948434
0.99607207

0.98BBTS01
0.94570201

09686358
095506362
0.99107680
0.96070529
0.99896115

096090164
0.92210268
0.95125638

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

050484343
0.894BB6TZ
091308739
097948712
0.75406018
0.9485264%
0.80538539
095017311
077407872
0.95005674
068132703

0.89373102
0.82B7B218
0.86564552
0.46120202
087245485
0.87628654
084751139
072072243
0.926B2563
0.79645656

068768314
0.77673157
0.82032704
0.BB4953
00462536
087357068
0.9658755%
0.65570147
0.69668TET

0.80532484
0.81B1B727
0.80156605
076182323
093560464
0.93B4B072
0.94B13156
0.866B5525
0.76B70618
092735182
0.88002087
090685467

0.94B2667

00044049
091583585
094708725
0.88266707
067146855
0.77904513
0.78923175

0E794185
0.92480715

0.7B931738
0.54BB34BE
0.92B66425

Passes the test? P-values max difference Max difference > 0.17

TRUE
TRUE

Variance
0.0369608588
0.0841462028
01218052245
01432168412
0.0635830880
0.07B4047343
00601790529
0.0651267391
0.0612389654
0.1302071692
0.055B40645
0.142B070161
01203864536
0.0549684658
00620433488
0.1095652125
01073468431
0.0631013199
01161711736
0.0733360019
01161711736
0.0842834412
0.0613726018
0.084636B652
0.070832162
0.1026732302
00275491350
01020754751
0.0769141246
0.0977016577
0.075393054
01061438025
0.0701641109
0.083BB71058

0.0733386520
0.04B4936769
00574679306
00955021639
0.0936408405
0.120B050862
0.0909843473
0.095571B67T
0.0567732286
00582936565

0.0845398616
01040685003
0.0733026113

0.11B0386073
0.0886720082
00840471708
0.0501889397
0.0895772345
0.0745488782
01219519712
01284103784
0.0950241231
0.070B639314
0.1262843601
0.0748710004
0.0577BB1155
0.06350B6865

TRUE
TRUE

28

0.039B679231
0.097565326

Scytl iVote 2.0 System
Responses to NSWEC-7 Final Report

www.scytl.com 29
| -

