

Scytl iVote 2.0 System

Response to “NSWEC-7 Final Report”

by David Hook and Carsten Schürmann, January 2019

Public release

June 2019

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

2

Scytl – Secure Electronic Voting

STRICTLY CONFIDENTIAL when contains “Draft” designation

© Copyright (2019) – SCYTL SECURE ELECTRONIC VOTING, S.A. All rights reserved.

This Document is proprietary to SCYTL SECURE ELECTRONIC VOTING, S.A. (SCYTL) and is

protected by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are

protected by patent applications.

No part of this Document may be: (i) reproduced whether direct or indirectly, temporary or permanently

by any means and/or (ii) adapted, modified or otherwise transformed.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

Revision chart

Version Date Primary Author(s) Reviewed by Description

1.0 11/6/2019 Security and Product

departments

Technical Writing team For publication

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

3

Table of contents

1 Introduction ... 4

2 Major Findings (Part 3 of the Final Report) ... 5

2.1 Client side .. 5

2.2 JavaScript, unused functionality .. 5

2.3 JavaScript, TODO markers ... 6

2.4 Misuse of the Voting App ... 6

2.5 Commenting .. 7

2.6 Entropy and randomness in the JavaScript client ... 7

2.7 Coding style ... 10

2.8 Potential overflow .. 10

2.9 Secret key reuse .. 11

2.10 Missing arguments from calls to hash-functions ... 12

3 Detailed Findings of Functional Matching and Verifiability Analysis (Part 6 of

the Final Report) ... 13

3.1 Election Key Generation .. 13

3.2 Voter Authentication .. 14

3.3 Vote Casting Details .. 14

3.4 Cast-as- intended verification .. 17

3.5 Phone voting verification ... 18

3.6 Cleansing ... 18

3.7 Mixing .. 20

3.8 Decryption .. 23

3.9 Proof of Correct Decryption ... 24

4 Attached ... 25

4.1 Annex 1 – PRNG flawed .. 26

4.2 Annex 2 – PRNG gold standard .. 27

4.3 Annex 3 – PRNG Scytl .. 28

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

4

1 Introduction

This document is intended to provide technical responses to points found in the review performed as

part of the iVote Refresh project by the DEMTECH GROUP and released in January 2019 on the iVote

System. The source code review that is responded to in this document is “NSWEC-7 Final Report” by

David Hook and Carsten Schürmann, January 2019 (the “Final Report”).

The responses provided in this material include a combination of development and security-related

information, intended to shed some light on topics raised.

To assist readability these1 are treated in the same order as the Final Report.

The feedback gathered is valuable and useful for the improvement of the Scytl software and can enrich

areas such as the source code and technical documentation. Some of these findings have been

considered in the version of the voting system used for the 2019 election and others are taken into

account for future releases of the system.

Raised items will continue to be reviewed and included as part of patches produced from time to time

as part of a continuous improvement program for Scytl software.

Summary of report:

It is the view of Scytl that whilst the Final Report did find areas of interest and discussion for both the

reviewers and Scytl, nothing significant was found relating to the security and integrity of the system.

Scytl acknowledges that areas of the code are not easy to review and have provided challenges to

reviewers and hopes that information shared in documentation has assisted reviewers to understand

the design and implementation of the system.

Scytl has work to do regarding code upkeep, which we acknowledge, and continue to do as an ongoing

activity. Other matters raised by the reviewers are described in the response herein.

It is important for readers to note that the Final Report was completed on an early release of the

application, and not the final version used in production in the election.

1 This document includes only responses for those points raised in the Final Report that require a clarification from

a technical and/or security perspective.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

5

2 Major Findings (Part 3 of the Final Report)

2.1 Client side

The client side code is heavily dependent on the use of JavaScript. In some cases the files

have been obfuscated, possibly in order to reduce their size. The use of obfuscation has made

the review of the code harder but not impossible. There are tools for removing obfuscation

which we have used and we are assuming as such tools are readily available it should clear

the obfuscation would not affect the security of the system.

Scytl response:

• The client-side code is dependent on the use of JavaScript because it needs to be executed on

browsers.

• The Javascript is not obfuscated, rather it is minified2. The aim is size reduction and does not

serve a security purpose. Security is provided by means of other elements.

2.2 JavaScript, unused functionality

The JavaScript appears to be full of unused functionality. We recommend getting some clarity

on this and having any excess code removed. The issue with unused functionality is that as

the JavaScript is readily downloading, an adversary is more likely to find exploits, with unused

functionality as it is also often not tested or maintained sometimes providing an easier way in.

Scytl response:

• Code cleansing and/or refactoring are both activities included in the Software Development Life

Cycle document which depicts all the development phases and areas of responsibility. In that

document, refactoring is typified as part of the Development team regular tasks. This team uses

Sonar to detect any unused code.

• Some of the libraries are used in multiple Scytl projects and so are included in the code base.

• In addition, the Security department runs its set of tests oriented to detect possible exploits and

coordinates actions to solve them when required.

2 https://en.wikipedia.org/wiki/Minification_(programming)

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

6

2.3 JavaScript, TODO markers

The JavaScript code contains 39 “TODO” markers. While this is not a sign an issue in itself,

we would recommend that any existing TODO are checked to make sure they have been

forgotten. Again as with unused functionality, incomplete code can also provide a lever for

exploit by an adversary

Scytl response:

• The Development team has a method to track TODO’s included to the code. This process

consists on adding a bullet point in a Technical Debt JIRA ticket for each of the new TODO that

is added.

• At the same time, the team performs code cleansing and/or refactoring as part of software

continuous improvement.

2.4 Misuse of the Voting App

An authenticated adversary can send invalid votes using the voting app by calling standard

JavaScript functions with wrong keys, and then cry wolf and subsequently allege incompetence

or a cyber attack. Both cases are possible, but any case will be a nightmare for NSWEC.

Scytl response:

It is potentially possible for authenticated adversaries to send invalid votes to the system, as long as the

invalid vote is correctly signed, and a valid Schnorr proof is created. In other words, an adversary can

encrypt a vote with invalid data, but cannot do it using invalid keys or generating incorrect proofs. Note

that these invalid contents will be always detected if the vote is verified.

In this case an authenticated adversary can send one invalid vote using the voting app by calling

standard JavaScript functions with wrong keys. This vote will be detected as invalid when decrypting

the content of the Ballot Box, and so will not be taken into account in the result of the election. Please

note that a verification of this vote through the Mobile Verification Application will result in an error, so

the voter will be aware that his vote is invalid.

This is the equivalent of sending an invalid or null ballot in a traditional election. Considering the NSW

election rules, this attacker will only be able to cast a single vote with a pair of credentials (iVote Number

and PIN), thus it cannot be used to attack the system by adding multiple ballots to the Ballot Box.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

7

2.5 Commenting

The Java/JavaScript code base does not exhibit a clear and consistent commenting policy. It

would be so easy for the code to reference back to the design documentation and vice versa.

This weakness makes manual code reviews unnecessarily cumbersome

Scytl response:

• Acknowledged. The commenting policy will be reviewed.

2.6 Entropy and randomness in the JavaScript client

It was not immediately clear what kind of entropy the JavaScript code uses to create

randomness. The JavaScript code uses cryptolib-js-securerandom, which indicates that robust

sources of randomness are included. We could not identify code that would conduct a entropy

quality assessment. After further discussion and assistance from Scytl it appears the

JavaScript RNG has been analyzed using both the Dieharder test suite and the NIST Statistical

Test Suite. Both the test suites used are definitely appropriate for the task. We would strongly

recommend the NSWEC acquire copies of these assessments as the quality of the entropy is

a cornerstone of the security of the overall system, and it is highly likely that anyone querying

the quality of the system will want such reports to be made available. In fact, it really would be

a testimony to the quality system if such reports were available on short notice for later

reviewers as well

Scytl response:

In order to provide some clarity about the entropy and randomness in the JavaScript client, an

explanation about the used tools was provided to the reviewers about the how entropy is collected,

randomness generated and how it was tested to ensure the statistical distribution of the process is

random.

The JavaScript client implements a Pseudo Random Number Generator (PRNG) based on the Fortuna3

proposal from Schenier to produce values with strong randomness. The client also implements several

entropy collectors to feed the buffer of the Fortuna PRNG. The amount of entropy provided from each

source and the proper implementation of the PRNG was considered in the implementation to ensure

the quality of the randomness produced. For this purpose, in this phase, the PRNG output is tested

against statistical analysis tools intended for such types of PRNGs.

As mentioned in the report, the tools used in this testing are the Dieharder test suite and the NIST

Statistical test suite:

3 Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, Inc., New York, NY, USA, 1edition, 2003

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

8

The Dieharder test suite (http://www.phy.duke.edu/rgb/General/dieharder.php) has

been used to analyze the output of the PRNG. This tool is a well-known and highly reputable Random

Number Generator testing suite, intended to test generators. It includes tests from the original Diehard

Battery of Tests of Randomness, as well as tests from the Statistical Test Suite (STS) developed by the

National Institute for Standards and Technology (NIST) and tests developed by the author of the

Dieharder test suite.

• From the set of tests available in the Dieharder Suite, those which need an overwhelming

quantity of data (more than 4GB, some tests even require 800GB) have been discarded, as well

those that are not recommended by the author.

• Discarding those sorts of tests, does not affect the quality of the testing, as there were only a

small number of tests of such kind and some of them would overlap others.

• Tests which supported different configurations have been performed using different input

parameters.

In total:

• 78 Statistical tests have been performed, on the output of the PRNG.

• 400 instances of the PRNG have been created with 400 different seeds. For each one of the

instances, 10.000 256-byte arrays of random values have been generated sequentially using

the PRNG. Each of the 256-byte arrays of random values have been used to create 64 32-bit

unsigned integers.

• Therefore, 640.000 32-bit unsigned integers have been generated for each seed, and a total of

256.000.000 random integers compose the output dataset to be tested against the Dieharder

test suite.

Values generated with the PRNG initialized with different seeds have been used in order to test, not

only that the values sequentially generated by a PRNG instance have the expected properties

(corresponding to a sequence of random numbers), but also to test that different instances of the PRNG

(initialized with different seeds) generate uncorrelated random numbers.

In order to have a reference of what should be expected from the tests on the implemented PRNG, two

other PRNGs have also been evaluated in the same way4:

1) A flawed PRNG which generates sequences of correlated random numbers.

2) A PRNG which is considered as a “gold standard” by the author of Dieharder and that passes

all statistical tests perfectly.

4 As a proof of fact and as Annex to this material, find attached to this document a complementary list of security

tests performed by Scytl: Annex1.dieharder_tests_prng_flawed, Annex2.dieharder_tests_prng_gold_standard

and Annex3. dieharder_tests_prng_scytl – Refer to Section 4 of this document.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

9

These two are tested against the PRNG that the user of the test suite wants to analyze, in this case

Scytl´s. This is the practice recommended by the own author as a standard.

As expected, all the tests have been successfully passed by the implemented PRNG, as well as by the

“gold standard PRNG”. However, the flawed PRNG has failed most of them.

Each of the test output files has a table with multiple columns and multiple rows.

• Each row represents a different test. If two rows have the same name it means that different

input parameters were used.

• The first columns correspond to different datasets and show the p-value of the tests on the

datasets. The other columns are functions of the previous columns in order to analyze the

results of the tests.

When executing a test on a file of random integers, the result is a number between 0 and 1, called the

p-value. In order to define whether a test succeeds or fails, one has to set a significance level (usual

values range from 0.1 to 0.001): if the p-value is smaller than the significance level consistently in

many executions of the same test over different datasets, then the test fails.

This is why one of the columns of the files is the maximum p-value: if it is smaller than the significance

level, then the test fails.

We have set a significance level of 0.005, but it is easy to see that, for both Scytl’s and the “gold

standard” PRNG, the p-values are much higher than 0.005, which means that they pass the tests with

significant success.

On the other hand, as one would expect, the flawed PRNG fails many of the tests.

Another issue to be considered is that the p-value is a random variable and, as such, the same test

over different datasets should produce noticeably different p-values. Therefore, in each file we add a

column which lists the difference between the minimum and the maximum p-values for each test, and

another column which lists the variance of the p-values. Then, we compare the difference between

the maximum and minimum p-value and make the test fail if this difference is smaller than 0.1.

Both Scytl’s and the “gold standard PRNG” succeed with this test as well, in particular such difference

is much bigger than 0.1 for all the tests. On the other hand, the flawed PRNG has many similar p-

values, and as a consequence it fails most of the tests.

Test results for the flawed, standard and Scytl’s PRNG are provided as Annex of this document:

• Annex1 dieharder_tests_prng_flawed.pdf

• Annex2 dieharder_tests_prng_gold_standard.pdf

• Annex3 dieharder_tests_prng_scytl.pdf

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

10

Information collected by the entropy gathering system is accumulated and, when required, it is used to

initialize the PRNG. The estimations about collected entropy have been done based on the following

article https://crypto.stanford.edu/sjcl/acsac.pdf.

2.7 Coding style

In some parts of the code, a concept of Job is defined to exploit concurrency and to administer

computations elegantly and effectively. Such programming patterns contribute to efficient

execution of programming tasks, but they make it more difficult for the reviewer to interpret and

evaluate the quality of the code.

Scytl response:

• Scytl acknowledges that the Job concept is used widely, and that the complexity of the task can

bring some code ambiguity.

• Scytl will review the usage of the pattern by adding comments when and if code interpretation

is difficult.

2.8 Potential overflow

In the code [SecondCommittmentGenerator.java, line 55-56], a product of two potentially large

numbers is computed, which might lead to a potential overflow. If triggered, this problem would

mostly likely crash the application during mixing.

Scytl response:

Regarding the potential overflow, we explained why this situation cannot be achieved and for a better

understanding, a deeper explanation follows:

• Currently by default m = 1; n =sizeEncryptedBallots [BGParamsProvider.java]

• Considering that NSW population is under 8 million, which is less than 2^23, the overflow cannot

be triggered unintentionally even if sizeEncryptedBallots is set to the number of

participants.

• As for the intentional code modi_cation, we assume that any adversary who has the power

to modify code and/or election settings would exploit more e_cient attach vectors.

https://crypto.stanford.edu/sjcl/acsac.pdf

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

11

2.9 Secret key reuse

The code is very clear that the secret election key is reconstructed for the purpose of mixing

and decrypting the ballots. What kind of mechanisms are in place to prevent secret key reuse?

Once the secret key is constructed it may be stored and stolen. Also, since the secret election

key is being constructed, once lost, it can be used to decrypt the original ballots breaking vote

secrecy. This renders mixing a nice but rather ineffective mechanism to protect the secrecy of

the vote. (see [4], Section 2.6.3.1)

Scytl response:

The main mechanism that is implemented to protect the key is the secret sharing scheme, where the

key is broken into shares and then destroyed so that it does not exist in as a complete key until needed.

Even though the election key is divided into shares and stored on separate smartcards, at the time of

generation and reconstruction for its usage, this key is present in the server memory as a single key

and only during the time that the key is used to decrypt and generate the decryption proof of the votes.

After this, the key is eliminated and is to be reconstructed again in the case that it is needed. This means

that, should the server where the key is used is compromised, the key could be stolen only at the

decryption phase and until the decryption process finishes.

This is the reason why the steps of election key generation and ballot decryption are made in an air-

gapped server avoiding the possibility of an online attack. In addition, these two steps are made during

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

12

a ceremony supervised by auditors and observers to ensure the procedure is correctly performed. This

is a combination of the form of the software and the process under which it must be used supporting the

security.

2.10 Missing arguments from calls to hash-functions

While reviewing the generation of the parallel shuffle proof, we observed a deviation between

documentation [4], page 15, and the implementation. The calls to hash functions in Prover.java,

and Verifier.java appear to be be applied to fewer documents than required. (see [Verifier.java,

line 141–143], [Prover.java, line 114–116], [prover.js, line 96], [verifier.js, line 84]).

Scytl response:

All hashes in proof generators and proof verifiers are computed according to the same rule (please find

extracts below).

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

13

3 Detailed Findings of Functional Matching and Verifiability

Analysis (Part 6 of the Final Report)

These response to questions are generally based on the system architecture.

3.1 Election Key Generation

The secret key is generated and then split into different shares (see also [3] Page 74).

Eventually, the election private key is reconstructed. There are two problems with this

approach. First, the system may be used with the same private election key for several

elections. Second, the private election key is already known before the election and may be

used by an adversary (who is assumed to be in possession of the key) to decrypt ballots as

they arrive and it is reconstructed after the election which would an adversary allow to decrypt

the unshuffled and uncleansed ballot box (assuming the adversary has access to the

database).

….

Scytl response:

As explained in the section dedicated to the Secret Key reuse, all the actions dedicated to the election

key generation and the ballot decryption, are performed in an air-gapped server to avoid malicious online

attacks.

• Responding to comments related to the Credential Manager code and to clarify, Credentials

are assigned at Institution level, hence the credentialID depends on the

institutionAlias. With this relation it is easy to identify to which Institution the Credential

belongs to. Similarly, the credentialID depends on the apiKey since the apiKey dictates

the combination of Channel and mode.

• The construction of a spare credential is used in the computation of the credential ID. This is

created by the Credential Generator and imported to the Credential Manager. The current data

of a spare credential is transparent for the Credential Manager.

• Regarding the hard-coded username password combination, and to clarify, the mechanism

based on Scytl JWT (JSON Web Token) is applied in order to secure endpoints in importing

credentials to the Credential Manager. The CustomUserDetailsService is called after the

JWT has been validated, at which point the user is considered authenticated. Credential

Manager does not hold a list of usernames/password for its Back Office, so the login is

delegated to the Voting Back Office, which is where the JWT is generated. If the Credential

Manager receives a valid JWT, the user is considered authenticated.

• All these explanations will be included in detail to the relevant document to avoid further

misunderstanding.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

14

3.2 Voter Authentication

We reviewed the source code that implements voter authentication. Most notable, we could

not verify the parameter to the PBKDF2 key derivation function. In order to be able to identify

locations in the JavaScript code, we needed to deobfuscate and pretty print it. The line numbers

refer to the line numbers in the deobfuscated file. The JavaScript code is also structured in

blocks. For simplified access we refer here to to the block numbers as well.

….

Scytl response:

• The pbkdf2 generation uses a 16 byte key, which is equivalent a 128 bit key.

• The authentication transform type used in pnyx-govlab component (e.g. Edmonton, MAEE)

and its description, will be included in the relevant documentation to avoid further

misunderstanding.

• The remaining pnyx-govlab modules have been decommissioned in this version and are

planned to be removed on the following iteration, hence they are not included in any document.

3.3 Vote Casting Details

Section 2.4 of [4] and section 5.4 of [1] appear to describe different mechanisms for

constructing a ballot. After consultation with Scytl it became clear that Section 2.4 of [4] was

the mechanism being used in the iVote system. It would be helpful to later reviewers if the the

description in [1] was either removed or brought into line with the one in [4].ll.

….

Scytl response:

• The pertinent documents will be updated following the suggestions provided regarding the Ballot

construction, naming in files and documents, authentication methods, and so on.

• Regarding the functionality for “castVote”, and as explained in previous sections, the voting

server and the rest of the backend services are designed taking into consideration that the

JavaScript voting client is not a trusted component and that an invalid vote can be received.

The document reference will be reviewed.

• Regarding the public election key encryption, and to clarify, the crypto service depends on

the certificates downloaded by the getCertificates endpoint. Then, the team assigns the

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

15

selected crypto module to the crypto service. This information in detail will be disclosed in the

relevant document.

• As a quick explanation about the sendVote method, this passes the response to the Receipt

Service that will validate the response. This information will be depicted in detail in the relevant

documentation.

• The field "password" allows adding an extra challenge for voter authentication. This can be

configured during the phase of credential generation, by adding some voter's personal

information (e.g. date of birth, postal code, etc) as part of the string (user + pin + password) that

will be derived in the client during voter authentication in order to get the credentialD and the

PKCS12 password. When this extra configuration is not used then the password field is set to

the hardcoded value of "password" for all the voters. This extra configuration is not used in NSW

iVote. In this case the field is hidden from the UI.

• Regarding [ball.candidate.js, line 200], this module is planned to be reviewed in future revisions.

• As a response to the “Dead code” comments, it is relevant to remark that the

getEncryptedOption is used by the Cipher Service through the encrypt, hence it relies on

the module of the crypto used in the election.

• The initialization vector description will be updated and included in the relevant document to be

aligned to implementation, also the format of the credential will be described.

• Regarding the “secret”, the saveSecret is set to false in order to delete it from the object where

it is saved and it is not stored along the encrypted ballot. The object that has saveSecret set

to true is used to create the secret and is not used directly to generate the encrypted ballot. The

secret, previously generated, is stored in a constant used to create and verify the proofs. Then

the gamma and phis from the first encrypted elements is taken to build another encrypted

element object without any saveSecret set to true. From that, we start generating the

encrypted ballot. We can confirm that the secret is not stored along the encrypted ballot.

• To the references made about “Imprecise Contract”, this is a Cryptolib related issue. The code

implemented should validate the preComputation object passed. This validation would point

to its interface without marking whether it is undefined or not. It could be defined although the

object type is different from the standard one and could generate errors.

• In relation to the hash computation, it is important to explain that the hash generator computes

hash over the set of public values as well as over additional data. Public values contain only the

proof commitment, while additional field ‘data’ defines all other public parameters that can be

used for hash computation [hash-generator.js]:

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

16

For example, “data” for the Schnorr proof is defined as follows [schnorr-proof-handler.js]:

Regarding the use of the method "createEnvelope()" with the encrypted vote, of the

SecureMessageHelper, it is needed to clarify that this is not the one used for a Verifiable Mixing

election type, the one used by iVote. Instead, the SecureMessageHomoHelper is loaded (see line 500

in method "createVote()" of file "restCalls.js") which has a specific "createEnvelope()"

method.

The method observed by the reviewers is the one used for the non-verifiable mixing case, based on

RSA encryption, and that is not used in iVote.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

17

3.4 Cast-as- intended verification

Internet Voting Verification

Just as the voting app, the verification app consists of an embedded JavaScript. Interestingly

enough, both JavaScript programs ivapi-0.8.0-min.js (voting app) are ivapi-0.7.0.js (verification

app) are equal in substantial parts of the code, it almost feels like the voting app runs a new

newer version of the JavaScript library than the verification app. This is very concerning as

maintainers could easily get confused, and developers may already have done so. The

JavaScript code is started from the Android App or the iPhone app, with “nsw-vote-verification”

[MainActivity.java, line 12], which is also our entry point for the source code review.

…

Scytl response:

• Code analysis has been conducted on a beta version when the software versions were not

aligned. The software versions are aligned in the final release.

• Regarding the field isforVerification in the login, this parameter indicates whether the

login is performed to vote or to verify the vote. In the second scenario, there are certain

operations that are not needed and are skipped for performance reasons. To achieve that, when

the login is performed in the Voter Portal the parameter is not passed. When the login is

performed in the Verification app the parameter is passed to true.

• The lines of the code that indicate that randomness is computed from the seeds that was

obtained from the QR code, are in the method "initDecrypter(randomness)" of the

"VerifiableMixer.js". There, a new PRNG is created with the seed passed by parameter.

• As detailed in the documentation provided, in order to decrypt the vote using the randomness

derived from the seed in the QR code, it is necessary to exponentiate the public key to the

negation of the randomness and then multiply it by the appropriate part of the encrypted

message (the part that is the public key exponentiated to the randomness and multiplied by the

message, a.k.a. phi value in the code).

This code can be found in the method "decrypt()" of the file "prng-decrypter.js" of the

module ScytlElGamal.

• The “isforVerification” parameter does not open iVote up for a timing attack. This just

differentiates a call of login for voting or for validating the vote. It does not provide information

to allow the login credentials to be inferred. The only information that could be inferred if the two

variants of the call have a difference in time is if the call is authentication for voting or for

validating a vote. It is equivalent to have two different authentication calls, one for each case.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

18

3.5 Phone voting verification

The software provided to us did not contain the essential modules for the IVR system that

would allowed us to review the phone voting verification. packages2/default/config.json

Typos Different default fields with a name ending in “length” are misspelled. This could be

problematic if the names are spelled correctly when referred elsewhere.

Scytl response:

At the time of this security review, the IVR component was not complete nor operational.

3.6 Cleansing

The source code contains different modules that refer to cleansing. Some functionality can be

found in the pnxy-govlab/mixing module, the other in the pnxy-govlab/cleansing. This is

confusing. The code should perhaps be refactored

Scytl response:

• These modules are considered isolated services that can work independently. A study will be

conducted to identify the need for refactoring in time as part of continuous improvements to the

code.

• Regarding the cleansing implementation concern of not being software independent, taking as

reference the definition5 “A voting system is software-independent if an undetected change or

error in its software cannot cause an undetectable change or error in an election outcome”, then

cleansing is software independent as it is a deterministic process. We would like to suggest an

ideal way to audit it, which is in line with its essence and characteristics. Because the cleansing

is a deterministic process and should always output the same result given an input, the ideal

way to audit the cleansing results is to implement a parallel cleansing application and confirm

that the results are identical in both cases.

• To respond to the doubts raised about the specifications presented in the relevant document,

when the votes are fetched, the last vote of each one of the voters is identified and is the one

that will be counted during the tally process. The flag used to identify the last vote from a voter

is called lastVote. Additionally, for voters whose votes are not to be counted can be

deactivated, which will prevent their vote from being counted during the tally process. The

certificate validation is using the CAValidationService which does check the certificate

5 Rivest, Ronald. (2008). On the notion of 'software independence' in voting systems. Philosophical transactions. Series A,
Mathematical, physical, and engineering sciences. 366. 3759-67. 10.1098/rsta.2008.0149.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

19

chain. Along with this explanation, the team will review the relevant document to ensure the

specifications provided are aligned to this description.

• In the Class conversion point, a code refactor will be considered to detect possible errors as the

best solution to avoid failure in keys.

• Duplication of code and other elements such as the sql.append are subject to code refactor

consideration. In the case of the sql.append it may be removed and the append itself would

continue being chained.

• As a quick explanation about the Cleanser functionalities, when the votes are fetched from the

database, there is a conditional statement that consider the last timestamp (which will remove

any duplication). The case when final_table.creation_date = (select max

(creation_date) from secure messages where voter_id=final_table.voter_id and

election_id=final_table.election_id) then 1 else 0 end as is_lastvote. As the

duplicated vote is not even loaded into the application (during the cleansing), there is no

auditable vote for such scenario.

• To the question related to the homomorphic counting method being part of the code base, Scytl

development is done towards a product that can support multiple and different security models.

• The section 2.6.1.3 of the document [4] Voting Protocol Description, underline that the validity

of the certificate chain or the X509 certificate is indeed not checked here but the Channel and

Mode information included within the certificate. The certificate validation uses the

CAValidationService which does check the certificate chain.

• The signature of the vote is checked in the method "validate()" of the class

VoteValidation in the package com.scytl.mixing.validation.

In any case, the mentioned part of the document will be reviewed in detail to ensure there is not

confusion in terms and processes.

• The Receipt verifier inherits its “verify” method from “BaseVerifier” which indeed does not

add any new polymorphic behaviour. This will be planned to be refactored in the future and the

“BaseVerifier” renamed.

• To ensure that the information related to the number of votes that were cast and the reference

“TOO_MANY_VOTES” is included appropriately in both documentation and source code, the

VoterValidation, line 53 and section 6 of the relevant document will be updated.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

20

3.7 Mixing

The mixing module implemented in the iVote-system appears to be new and under

construction. Many error cases are not implemented completely, and judging from some of the

comments in the code, it is not clear what the correct functionality is. In the form the code is

now, it is possible for it to crash with an an “Unmatched exception” during mixing (as opposed

to dying gracefully). The mathematical foundations of the mixer code are extremely

challenging. The paper by Bayer and Groth present different versions of their mixing algorithm,

and judging from our review, the one that is implemented is not the one that is described in [4].

…

Scytl response:

• Given that the mixing is executed asynchronously if one error happens, the exception is caught

then, the exception is logged, and the mixing status updated. Finally, the exception is thrown

again so that spring gracefully kills the thread.

• Due to the complexity of the paper produced by Bayer and Growth, the information provided in

the relevant documentation may not have been precise. However, their shuffle argument is the

one followed in this system. A review of the documents has been conducted to improve the

information provided in the production system.

Mixing/ mixing-core

• TODOs allow the team to identify areas of the platforms that can be improved in a future iteration

and may be part of the refactoring work the team will perform, bearing in mind that the feature

is already implemented and meeting the requirements.

Mixing/ commons

• Responding to the point raised regarding the mixing code lack of exception management, it is

needed to explain that the Gjosteen ElGamal (decryption method) validates the input parameter,

after that, the algorithm serializes only the data into some JAVA objects. In the Gjosteen

ElGamal (encrypt method) an object is instantiated based on an array, so if the array length is

0, the object will reproduce the "right" answer regarding the current length 0;

GjosteenElGamalRandomness -> as this class cannot be instantiated without having the "r"

instance variable with a value, the other methods should work fine. The Exponent already

validates the input parameters inside its own constructor, ensuring a right value for the "r". As

we just need a correct exponent in this class, the methods will not have any further problem.

Mixing/ mixnet- shuffle

The code in ElGamalShuffler.java generates permutation, shuffles ballots and re-encrypts them,

as presented in this snip:

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

21

In relation to the comment made regarding the security proof, it provides a perfect completeness of non-

interactive SHVZK, which is a requirement for proving that the Mixnet is secure. For example, mix-nets

based on a Randomized partial checking provide strong evidence of correctness, but not the complete

correctness since the security is mainly proven heuristically.

Mixing/ proof generation

Resetting m is an explanation that will be included in the technical documentation.

By default, m = 1 and n = N, however Zero Argument computation requires the generation of an element

~a0 and then computing .

To avoid problems with insides, it was adjusted from the beginning. The code follows the logic described

in the Bayer and Growth paper (specifically Zero Argument 5.1).

In reference to the class “Multiexponentiator”, this is described in scytl-math package.

According to the paper of reference, , the code described below gives exactly the same

output, but transformed into a matrix.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

22

The document that describes the voting protocol (NSW Electoral Commission. iVote Voting System,

Voting Protocol Description) will be updated to incorporate implementation details based on multi-

dimensional matrices instead of one-dimensional vectors.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

23

3.8 Decryption

We started the review with AbstractBallotDecryptionService.java which contains the

implementation of the decryption algorithm is implemented. The main part of “ProveDec” (see

[4], page 15) is implemented in Prover.java. The implementation matches the decryption

process as described in documentation.

…

Scytl response:

• As a future improvement Scytl plans to work on a glossary to the align naming used in

documentation and code.

• More details about validity checks will be included in the design documents. In this sense, the

following explanation will be added:

The function validateDecryptionProofGeneratorInput verifies that all values provided as input

(publicKey, ciphertext,plaintext, privateKey) are not null, lengths of public and private

keys are equal, lengths of ciphertext and plaintext are publicKey + 1:

• The use of “c” in the code, instead of “h”, is widely extended as it refers to “challenge”.

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

24

3.9 Proof of Correct Decryption

We are not totally clear on the decryption proof overall as the library code appears to be written

to support several kinds, however it does appear that VerifiableMixer.js calls schnorr-proof-

handler.js and does so with options.voterId and options.electionId set.

…

Scytl response:

The Proof of Correct Encryption is computed during the ballot generation process and sent along with

the encrypted ballot to the server. In such case, the Schnorr proof is needed to convince the verifier that

the prover known encryption exponent was used for the ballot generation.

For privacy reasons, the plain text is not included, to avoid that anyone can access the content of the

encrypted ballot by simply verifying the proof.

A Schnorr proof is a proof of knowledge of a discrete logarithm. The only place where it's generated in

the client is in the following line (231) of the VerifiableMixer.js

const generatedProof = this.schnorrProofHandler.generate(secret,

 ciphertext.gamma,{ voterId: tokenUsername,

 electionId: ballot.electionId, preComputation: this.precomputation });

This proof of correct encryption ensures that an encrypted vote from another voter is not reused. In other

words, it's used to make sure that the voting device knows a secret r such that the first component of

ciphertext is g^r. After the proof is formed, the encrypted vote is digitally signed together with the proof

and its associated metadata using the pair of Voter Signing Keys obtained during the authentication.

The encrypted vote, signature, and proof are sent to the Voting Service. This signature prevents any

attempts to modify the encrypted vote.

The proof of correct encryption is verified both when the vote cast arrives at the voting server and when

the cleansing operation is performed during the counting. The output of the cleansing does not contain

this proof, only ciphertexts (the votes without signature, proofs or any other information), thus after this

step the proof is not forwarded in the next steps of the counting. In order to make sure, that this vote

has not been changed during the cleansing, mixing and decryption processes, an auditor should check

the correctness of the cleansing process (this process is deterministic and can be reproduced) and verify

proofs of correct mixing and decryption (which are not the encryption proofs we are discussing here).

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

25

If we include selected plaintext into this proof, everyone (Voting Service, someone who intercepted the

message, someone who reads the database) would be able to say which message is inside without

breaking the encryption.

As for the proof of correct decryption, that is generated during the decryption phase (takes place after

mixing), it is based on the Chaum-Pedersen protocol, which is schnorr-like indeed. A non-interactive

challenge for that proof is computed as follows: h = H(pk|c2/m|gs|(c1)s|“DecryptionProof”). The code

can be found in ProofUtil.java

4 Attached

Annex1.dieharder_tests_prng_flawed

Annex2.dieharder_tests_prng_gold_standard

Annex3. dieharder_tests_prng_scytl

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

26

4.1 Annex 1 – PRNG flawed

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

27

4.2 Annex 2 – PRNG gold standard

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

28

4.3 Annex 3 – PRNG Scytl

Scytl iVote 2.0 System

Responses to NSWEC-7 Final Report

29

