NSWEC-7

o
=
o
S
O
L
o
et
=
Q
(o

DEMTECHGROUP

DEMOCRACY, TECHNOLOGY & TRUST

Ribegade 19 st th
2100 Copenhagen
Denmark

CVR: 35527052

Review of the iVote 2.0 System

David Hook and Carsten Schirmann
January 2019

Final Report

NSWEC-7

NSWEC-7

Table of Contents

1 EXeCULiVe SUMMAIYcuiieieiiiiie s e e s r e e reanas 1
2 Scope and Review Methodology.........cieiruimimeiiiiiiiirrer e e 3
R T 1 = 1o gl 1 T 13 Vo L= 5
4 Detailed Findings of Code Scanning Analysiscccoveiririiiiiiriincrrrrnneans 7
5 Detailed Findings of Code Coverage AnalysSiS..........corovermimuieirriiraienrienraeeans 9
6 Detailed Findings of Functional Matching and Verifiability Analysis.................... 11
6.1 Crypto LIDrarieso 11

6.2 System ArChiteCtUre.o e 11
6.2.1 Underlying algorithms ... e 12

6.2.2 Election Key GEeNerationc.iuiuiiiiiiiii e 12

6.2.3 Voter Authentication.............ccooiiiiii 12

6.2.4 Vote Casting Details.......covuiuiiiiiii e 14

6.2.5 Cast-as-Intended Verificationcooeeiiiiiiiiii 17

B.2.6 ClANSING ... cniiieie e 18

B.2.7 IMIIXING .t 20

B.2.8 DB PtION .ttt 22

6.2.9 Proof of Correct DeCryptionouieieiiiii e 23

NSWEC-7

NSWEC-7

1 Executive Summary

We have assessed the software quality of the iVote system designed by Scytl
by using off the shelf automatic code-scanning tools and by manually in-
specting the source code.

The code-scanning analysis has shown that the overall quality of the code
is in general high, and that the implementation is largely free from bad and
insecure programming patterns with the exception of the code implementing
the mixer, which is still under development and apparently has not under-
gone quality assurance. Scytl appears to use the Sonar code scanning tool
throughout the software development process, which is good practice and
explains our findings. For the manual analysis of the code, we have applied
functional matching and a verifiability analysis, resulting in the following ob-
servations.

1. Some parts of the source code appear to be still under development
when the snapshot was provided to us. This may mean that the findings
of this report only apply to this particular version of the system, and not
future versions of it. The source code contains several TODO comments
and in particular, the code for error and exception handling in the mixer
is still under active development. Automated analysis of the mixnet also
flagged some possible quality issues regarding the mutability of objects.

2. The design documentation and the implementation are not always in
sync. We have compared critical parts of the implementation line by line
to the design documents provided to us. The results include that (1) the
documentation differs from the implementation for certain algorithms for
example mixing, (2) some functionality could not be identified in the source
code, (3) the design documentation was found to lack explicit references
in the implementation.

3. The code base contains a substantial amount of unused functionality,
which is outside the scope of this review. The presence of such code is
a security concern, since if it is executed, for example, by an insider at-
tacker, it could be used to crash the application, or poison databases and
log files.

4. The system relies on JavaScript clients to implement the voting app and
the vote verifier. It appears that the functionality of both parts is imple-

NSWEC-7

mented in the ivapi library, of which different versions are included in the
source code for vote casting and for vote verification.

5. There is a documentation gap concerning entropy for the JavaScript client.
The quality of entropy is critical for the security of the iVote-system, re-
ports concerning the quality of entropy generated in the client using rec-
ognized tests for representative browsers need to be provided.

6. The iVote-source code appears to be a combination of (1) standard Scytl
modules (2) modules developed for iVote but intended to become part of
the standard Scytl modules, such as mixing, and (3) custom developed
modules for iVote to integrate the solution into existing infrastructure. The
reuse of standard components, in general, is good practice however it
also bloats the code base which renders the software review unnecessar-
ily tedious.

7. The iVote system relies on several libraries, or dependencies, that were
not included in the drop and that are necessary to compile the system.
Such libraries include Spring, Hibernate frameworks and others. The iV-
ote system and therefore the entire election dependent critically on the
frameworks. Vulnerabilities in these libraries and frameworks translate
directly into vulnerabilities of the iVote system. To check such vulnerabili-
ties, use the CVE database as a resource.’

Recommendation 1 Scytl should provide better design documentation of
the system. Without better documentation, it will be difficult to maintain the
system, for example, by a future vendor.

Recommendation 2 Scytl should consider refactoring the source code in
such a way that only the necessary parts are included in the distribution.
This applies to the Java components as well as the JavaScript files.

Recommendation 3 NSWEC should require Scytl to make available a sys-
tem that builds out of the box for future code reviews. At the very least, the
code base should be accompanied by all version numbers and dependencies
that the build relies on for the distribution to the reviewers.

See https://www.cvedetails.com/vulnerability-list/vendor_id-9664/product_id-
17274/Springsource-Spring-Framework.html|

NSWEC-7

2 Scope and Review Methodology

This review is based on five documents that were provided by Scytl.

[4] NSW Electoral Commission. iVote Voting System, Voting Protocol De-
scription . Internal release, April 24 2018.

The code base, provided to us directly by Scytl, covers around 14 different
languages. The principle language is Java, with about 286000 lines of exe-
cutable production code followed by JavaScript at about 83000 lines of ex-
ecutable code. The rest of the system consists of XML, SQL, HTML, CSS,
JSON and shell scripts producing a total body of work of just over one million
lines. Given the complexity and size, as well as consideration of time and
budget, an exhaustive review of the entire code is beyond the scope of this
review.

In this review we use automated code scanning tools to identify vulnerabil-
ities, bugs, and possible bad programming style and conduct a functional
matching and verifiability analysis by identifying and matching the function-
ality provided in the documentation with the source code. Scytl has also
shared the result of different coverage analyses of some modules to allow
for a review of the effectiveness of their current testing regime. As a result
our review has concentrated on functional matching against the documenta-
tion we have been given, a review of implementation of the entire iVote archi-
tecture, including encryption of ballots, transmission, verification, cleansing,
mixing, and decryption. Because of resource constraints, the review of Scytl’s
secure logging system and the phone voting interface are outside the scope

NSWEC-7

of this review. Automated analysis and developer tools were applied to the
entire code base to look for duplication and unused or unnecessary code.
Due to the lack of good code scanning tools for JavaScript, no automated
code scanning analyses for JavaScript APls was conducted.

Outside the scope of functional matching and the verifiability analysis are all
parts of the implementation for which no design documents were provided.
This includes some of the standard modules of the Scytl voting solution, but
also configuration functionality related to iVote deployment and third-party
libraries, such as Angular.js, RabbitMQ, Spring, Hibernate, and others. As
the voting app and the verification app rely on the JavaScript code, we use
off the shelf tools to deobfuscate an pretty-print JavaScript libraries, such as
“ivapi-0.8.0-min.js”.

NSWEC-7

3 Major Findings

Client side The client side code is heavily dependent on the use of JavaScript.
In some cases the files have been obfuscated, possibly in order to reduce

their size. The use of obfuscation has made the review of the code harder

but not impossible. There are tools for removing obfuscation which we have
used and we are assuming as such tools are readily available it should clear
the obfuscation would not affect the security of the system.

JavaScript, unused functionality The JavaScript appears to be full of un-
used functionality. We recommend getting some clarity on this and having
any excess code removed. The issue with unused functionality is that as the
JavaScript is readily downloading, an adversary is more likely to find exploits,
with unused functionality as it is also often not tested or maintained some-
times providing an easier way in.

JavaScript, TODO markers The JavaScript code contains 39 “TODO” mark-
ers. While this is not a sign an issue in itself, we would recommend that any
existing TODO are checked to make sure they have been forgotten. Again as
with unused functionality, incomplete code can also provide a lever for exploit
by an adversary.

Misuse of the Voting App An authenticated adversary can send invalid
votes using the voting app by calling standard JavaScript functions with wrong
keys, and then cry wolf and subsequently allege incompetence or a cyber at-
tack. Both cases are possible, but any case will be a nightmare for NSWEC.

Commenting The Java/JavaScript code base does not exhibit a clear and
consistent commenting policy. It would be so easy for the code to reference
back to the design documentation and vice versa. This weakness makes
manual code reviews unnecessarily cumbersome.

Entropy and randomness in the JavaScript client It was not immediately
clear what kind of entropy the JavaScript code uses to create randomness.
The JavaScript code uses cryptolib-js-securerandom, which indicates that ro-
bust sources of randomness are included. We could not identify code that
would conduct a entropy quality assessment. After further discussion and

NSWEC-7

assistance from Scytl it appears the JavaScript RNG has been analyzed us-

ing both the Dieharder test suite and the NIST Statistical Test Suite. Both

the test suites used are definitely appropriate for the task. We would strongly
recommend the NSWEC acquire copies of these assessments as the quality
of the entropy is a cornerstone of the security of the overall system, and it is

highly likely that anyone querying the quality of the system will want such re-
ports to be made available. In fact, it really would be a testimony to the qual-
ity system if such reports were available on short notice for later reviewers as
well.

Coding style In some parts of the code, a concept of Job is defined to ex-
ploit concurrency and to administer computations elegantly and effectively.
Such programming patterns contribute to efficient execution of programming
tasks, but they make it more difficult for the reviewer to interpret and evaluate
the quality of the code.

Potential overflow In the code [SecondCommittmentGenerator.java, line
55-56], a product of two potentially large numbers is computed, which might
lead to a potential overflow. If triggered, this problem would mostly likely
crash the application during mixing.

Secret key reuse The code is very clear that the secret election key is re-
constructed for the purpose of mixing and decrypting the ballots. What kind
of mechanisms are in place to prevent secret key reuse? Once the secret
key is constructed it may be stored and stolen. Also, since the secret elec-
tion key is being constructed, once lost, it can be used to decrypt the original
ballots breaking vote secrecy. This renders mixing a nice but rather ineffec-
tive mechanism to protect the secrecy of the vote. (see [4], Section 2.6.3.1)

Missing arguments from calls to hash-functions While reviewing the gen-
eration of the parallel shuffle proof, we observed a deviation between docu-
mentation [4], page 15, and the implementation. The calls to hash functions
in Prover.java, and Verifier.java appear to be be applied to fewer documents
than required. (see [Verifier.java, line 141-143], [Prover.java, line 114-116],
[prover.js, line 96], [verifier.js, line 84]).

NSWEC-7

4 Detailed Findings of Code Scanning Analysis

Owing to the number of artifacts involved, as well as their size and some de-
pendencies that we are not able to resolve, we were not able to do scanning
on all modules, but decided to do a sample. It took several days to build sec-
tions of the iVote system on our premises. In particular, this was because
there are different versions of some of these dependencies used in different
parts of the system, and as the build system is based on Maven, in some
cases it appears that reference is made to in-house Maven plugins which we
do not have, and also in a few cases, the dependencies appear to be local
patched versions of standard libraries. Without the correct versions, or ver-
sion details, for dependent libraries, building the system is impossible.

Full analysis was done on the following modules:

* cryptography
* cryptolib

* secure-logger
* mixnet-verifier

« online-voting-logging

In all cases the code being analyzed was Java code and the full analysis is
available in the attached supplement (see Appendix A).

Overall the code analysis suggests the use of analysis tools is evidently
taken seriously by the developers, in many cases there were either no de-
fects, or the defects listed were reasonably trivial ones. While automated
analysis can be useful it is true to say that sometimes, in the context of the
execution environment of a particular piece of code, the automated analysis
does overreact.

That said, there were some sections of the code that do warrant further in-
vestigation in the mixnet. Given the size of the reports for these sections of
code (see pages 40 to 49 of the supplement for example), it does appear

NSWEC-7

that the code is probably recent and has not completely gone through inter-
nal analysis. One issue that is flagged is that some objects being used in the
mixnet appear to be either mutable by intent, or expose internal fields and
are mutable by accident. We would strongly recommend that where mutabil-
ity has been reported it is either removed or if the object cannot be changed,
steps are taken to protect the rest of the mixnet from the object’s mutability.
The mixnet does appear to be multi-threaded. As this is the case, mutable
objects are quite dangerous. Even if in the current implementation the usage
of mutability is unlikely to cause trouble, the reality is that any maintenance
on the code base could easily result in the mutability causing errors if a de-
veloper either forgets or is unaware that an object may be shared between
threads.

NSWEC-7

5 Detailed Findings of Code Coverage Analysis

Several of the documents provided made claims concerning code-coverage.
Abbreviated coverage reports were provided for the following modules:

* cryptography

* cryptolib

» govlab-JavaScript-client-api
* mixnet-verifier

* NSw-consumers

* nsw-converter

* nsw-credential

* nswec-olv-voter-portal
* nsw-results

« online-voting-logging
* p7-cms

* pnyx-govlab

* pnyx-receipts-backend
* pnyx-receipts-frontend

* secure-logger

The abbreviated coverage reports were consistent with all claims made in the
documentation.

Further analysis was done in this area also. One issue with abbreviated cov-
erage reports, especially as applying to modules with large number of lines
of code, is that while the abbreviated coverage may show coverage of more
than 80 percent, the question always remains as to what was missed in the

NSWEC-7 10

other 20 percent. As with automated analysis, doing a full coverage check
was beyond this review due to the size of code base, however we did re-
quest, and received in-depth coverage reports for four modules in order to
gain an impression concerning the overall effectiveness of testing. The mod-
ules we received full analysis for were:

cryptolib

* mixnet-verifier

online-voting-logging

» secure-logger

These modules were chosen as they seemed to provide the greatest amount
of "critical" code in the security sense for the overall system. Further sam-
pling was done on the coverage reports due to the number of files involved
and the need to read and follow the annotated HTML representing each
class file that had coverage analysis done on it.

In the files that were examined it appeared that testing was indeed effective
in the sense of providing meaningful coverage reports. Gaps generally ap-
peared to be related to internal exception handling for things that had to be
dealt with due to the use of checked exceptions in Java. This is a common
shortcoming of the Java language in respect to coverage analysis as often
checked exceptions need to be dealt with even if there is no chance of them
being thrown. The result of this is that triggering an exception which would
exercise the gap created by the code handling the exception in the first place
would generally require a catastrophic failure of the system - something which
is difficult, if not impossible, to emulate in a test. Other than this "gap issue",
in general, branches within the code appeared to be getting tested correctly.

NSWEC-7

11

6.1

6.2

Detailed Findings of Functional Matching and
Verifiability Analysis

Crypto Libraries

Basing the level of importance on the provided documentation the primary
libraries involved with cryptography are:

* cryptolib
 secure-logger

* mixnet-verifier

Examination of the code also showed the use of some additional libraries
which were provided to us as well.

« cryptography: a set of helper classes wrapping JCA/JCE functionality as
well as providing a few primitives of its own.

« online-voting-logging: Logging package used for generating secure logs
used by the mixnet.

» p7-cms: Utility APIs that capture a simple way of creating signed and en-
veloped messages from PKCS#7/RFC 5652 Cryptographic Message Syn-
tax (CMS).

Broadly we found these packages meet the expectations we had from the
supplied documentation, both in terms of the ones being used and also the
security strengths of the algorithms involved.

System Architecture

In our review methodology for the system architecture section, we followed
the documentation provided, and reviewed the part of the code implement-
ing the functionality outlined in the documentation. This part of the review

focuses on [4], Chapter 2. We structure this section correspondingly.

NSWEC-7 12

6.2.1 Underlying algorithms

We have reviewed the underlying algorithms. Scytl’s implementation uses
the ElGamal cryptosystem. The encryption of the vote happens in the voter
app, and therefore it is the JavaScript crypto libraries that implement the en-
cryption. While reviewing the ivapi-0.8.0-min.js we observed that encryption
works with lists of messages (and not individual messages), which indicates
that iVote uses the encryption scheme described in [4] Section 2.1.

6.2.2 Election Key Generation

The secret key is generated and then split into different shares (see also [3]
Page 74). Eventually, the election private key is reconstructed. There are two
problems with this approach. First, the system may be used with the same
private election key for several elections. Second, the private election key is
already known before the election and may be used by an adversary (who
is assumed to be in possession of the key) to decrypt ballots as they arrive
and it is reconstructed after the election which would an adversary allow to
decrypt the unshuffled and uncleansed ballot box (assuming the adversary
has access to the database). A preferred alternative would be to have each
Board Member create their own public private key shares and then compute
the public election key as the product of the public key shares. This way, by
design no one will ever be in possession of the entire secret key. The code
base implements the key generation process as described in [4].

As part of this section, we also reviewed the source code implementing the
Credential Manager. We have found deviations between the code and the
design documentation [3, 4]. Most notably, we observed that the implemen-
tation uses an encrypted “iVoteHasPin”, that needs to be decrypted before it
can be used to compute the credential ID. In the implementation, the “cre-
dentiallD” also depends on an “apiKey” and the “instutionAlias” [sic] (see
[CredentialManagerServiceAdditionalValues.java, line 94], note that institu-
tion is misspelled), which are not explained in the documentation.

The construction of a spare credential is also not mentioned in the documen-
tation, but it is used in the implementation [CreateVPBServicelmp.java, line
87] in the computation of the credential ID.

In [CustomUserDetailService.java, line 25], there is a hard-coded username
password combination, with a password “nopass”. Without detailed design
documents it is not clear if this is a real security weakness and how it could
be exploited, but it is something that we should flag.

NSWEC-7 13

6.2.3 Voter Authentication

We reviewed the source code that implements voter authentication. Most
notable, we could not verify the parameter to the PBKDF2 key derivation
function. In order to be able to identify locations in the JavaScript code, we
needed to deobfuscate and pretty print it. The line numbers refer to the line
numbers in the deobfuscated file. The JavaScript code is also structured in
blocks. For simplified access we refer here to to the block numbers as well.

[ivapi-0.8.0-min.js, line 42699] Block 500 This block does the voter authen-

tication (see [4], 2.3 Voter authentication. It is a bit confusing that it says “exter-
nalUsername” in the JavaScript, whereas it is called iVotenumber in [4]. Addi-

tional arguments to the pbkdf2 function in the JavaScript include “apiKey”, and
“institutionAlias”. To run the pbkdf2 function to compute the “credID”, the JavaScript

uses the following arguments, (1e4 = 10000 iterations), 16 and p.default.md.sha256.create().
There is concern that the the pbkd2 function generates only a 16 bit key and not

a 128 bit key as required.

var r = p.default.util.bytesToHex (
p.default.pkcs5.pbkdf2 (
t,
"1p’,
le4,
16,
p.default.md.sha256.create ()
)
)i

The corresponding code in the iVote (see authentication-transform) uses
10000 and 128 as arguments to PBKDF2.

pnyx-govlab Authentication Transform Nowhere in the documentation are
the different transforms (i.e. Edmonton, Maee) described. If unnecessary,
remove from the distribution. It appears to be used in applets, but they are
not used in the iVote system.

pnyx-govlab Remaining modules The review of this module is outside the
scope of this review, because no documentation is provided. Also this project
folder contains applets, but there are no applets (to the knowledge of the re-
viewers) for this version of the iVote system.

NSWEC-7 14

6.2.4 Vote Casting Details

Section 2.4 of [4] and section 5.4 of [1] appear to describe different mecha-
nisms for constructing a ballot. After consultation with Scytl it became clear
that Section 2.4 of [4] was the mechanism being used in the iVote system.
It would be helpful to later reviewers if the the description in [1] was either
removed or brought into line with the one in [4].

To identify the vote casting details, we reviewed the deobfuscated JavaScript
code further. The iVote voting app will run in the browser. To this end, it uses
Angular.js to render ballots. The review of this framework lies outside this
review. Note, that vulnerabilities in Angular.js are also vulnerabilities for the
iVote-system. While reviewing the deobfuscated JavaScript file, we observe
that block 1-350 define functionality related to integrating the Voting app into
different runtime environments, blocks 351- 494 implement a version of cryp-
tolib, and blocks 495ff. the code of the actual voting client. We could verify
that the different parts of [3], Figures 31 and 32 are present in the JavaScript
file, but we could not determine the order in which the different actions are
executed. This section summarizes our findings.

[ivapi-0.8.0-min.js, line 41586 ff.] Matching The functionality described

in [3], page 59 ff. is implemented in this this file. There are discrepancies in
naming. The documentation refers to it as OV Api while the file is called IV
Api. The implementation of detect does more than its specification, i.e. de-
termine if the app runs on a mobile phone or a computer and in which kind
of browser. Institution Data in the document (page 60) is called Tenant Data
in JavaScript. Authentication is implemented by the method “loginAdvanced”
and “loginRecognized”. There was not enough information in the JavaScript
file or the other files of the iVote system to determine where “credential-
ManagerintegrationURL” is defined pointing too, and how it is used and se-
cured. There was also not enough information provided in the documentation
to determine if the validation methods are complete, see for example “vali-
dateParams”. We observed some code duplication on the JavaScript file, for
example two different calls to T.getBallot.call(h) in advanced and recognized
authentication methods. There are undocumented methods “getAudio” and
“validateBallot”, which invokes another method called “ballotdelivery”.

[ivapi-0.8.0-min.js, line 41586 ff.] Code organization Regarding the func-
tionality for “castVote”. The organization of the code is problematic. If vote
validation is a precondition for “castVote”, then an adversary controlling the
JavaScript may just invoke “castVote” directly circumventing validation. There-
fore, judging from the code, any voter may cast an invalid vote. The figure on

NSWEC-7 15

page 66 also shows that the encrypted ballot is completely constructed in the
voting app, and then send to the voting portal without additional verification.

[ivapi-0.8.0-min.js, line 41586 ff.] Mismatch with documentation There are
methods “verifyVote” and “reportincorrectVote” that are not described in the
accompanying documentation, but they are available in in the JavaScript

file. We observe that “verifyVote” provides an adversary with the possibility

to learn or to fix the randomness, which may enable attacks through code
injection a la Halderman. The same library that is also used for the mobile
phone verification app. This is in conflict with a clear segregation of duties.
The JavaScript also contains a generated shift/reduce parser, whose purpose
is unclear.

[ivapi-0.8.0-min.js, line 44239] Blocks 513 Why is there are hard-coded
election relevant information in the JavaScript file? It looks like this block con-
ducts a test of all of the functionality necessary to run the ivoteClient. There
is some mention of such functionality in [4], but details are missing.

[ivapi-0.8.0-min.js, line 45345] Blocks 518 As a best guess, this block im-
plements the vote casting details from [4], section 2.4. The “electoralBoard-
Pubic” key is located on line 46061. The blueprint for the envelope used is
given on line 46441, in block 524. We wonder, why the public election key
needs to be encrypted, one more time (see “encryptSecretKey”). This is not
described in [4] and therefore a deviation. The get encrypt the vote (see “ge-
tEncryptedBallotData”), the encryption function of a “CryptoHelper” is be-

ing invoked, but it is unclear to which encrypt this refers to. However, it is
the same encryption function that is used to encrypt the public election key,
which refers to the encryption function defined on line 32798 (Block 424). It
appears that the JavaScript implementation deviates from [4]. The signing of
the ballot is implemented in “createVRR”, line 46114. Note, that the signature
does not apply to the Schnorr proof that is also generated with the ballot.

[ivapi-0.8.0-min.js, line 47530] Blocks 530 Here the receipt is extracted
and displayed to the voter. This block contains many more functions than
described in the design documentation [4]. Not enough documentation is pro-
vided to understand the intended meaning of the other blocks.

[ivapi-0.8.0-min.js, line 48093] Blocks 532 The “sendVote” method (de-
fined on line 47093) appears to send the vote to the voting service without
waiting for a reply from the Voting Service with the signature of the encrypted
vote that is to be checked. This means that we could not verify step 10 in
Section 2.4 of [4].

NSWEC-7 16

[remote-login.js, line 97] Hardcoded password a default password is set
to “password”. This seems unnecessary but not necessarily harmful.

[ball.candidate.js, line 200] Software quality This is a brittle way of en-
coding the pop. What if the type of “lastAnswer” is a capitalized “UNDE-
FINED” because someone made a change in a different module.

[ivapi-0.8.0-min.js] Dead code It is unclear how much of the remaining
code is important for the iVote-system. We would like to point out, however,
that salts and encryption algorithms are hard-coded in the JavaScript file.
Functionality such as “getEncrytpedOptions” is available, but not used any-
where.

[ivapi-0.8.0-min.js, line 42728] Block 500 The initialization vector n and
tag o occur only in the implementation, but not in [4]. The format of the the
credential is not described in [4], which seems to be a string with three com-

ponents separated by ’-’: called “transformedPin”, “transformedUsername”,
“password”.

[ivapi-0.8.0-min.js, line 42841] Block 501 In the JavaScript code, it seems
that the label “makeSecretKey” appears to be a factored out version of the
call to the “pbkdf2” method, called one time with the “SALT_VOTER”, and the
other with the salt for the Password (see password salt in ([4], page 6), to

be consistent with [4]. Also in this call, it appears that pbkdf2 is called with
argument 16 instead of 256.

[ivapi-0.8.0-min.js, line 42841] Blocks 502-507 It is not clear what the
code does in relation to [4].

[ivapi-0.8.0-min.js, line 43516] Blocks 508 is the “getPrivateKey” method
here the recovery of the authentication token from the Voting Service? It is
not clear. The naming in the JavaScript could be improved.

[encrypter.js, line 139] Documentation deviation The encrypter provides
two modes of operation when encrypting ballots, depending on if “saveSe-
cret” is true or false. The “secret” is what is called r in Section 2.4 of [4] and
will need to be stored for all ballots for the purpose of verification. Therefore,
“saveSecret” must always been set to true. Consider removing the other op-
tion. Regarding secrets: it is very important that they are not stored together
with the encrypted ballot (which could then be decrypted because the it is
enough to know the “secret” to decrypt, knowledge of the election private key

NSWEC-7 17

is unnecessary). Therefore, the “secret” should be separated from the en-
crypted ballot as early as possible, preferable already right after encryption
and Schnorr proof generation. The documentation should be updated to re-
flect how, when and where the “secret” is stored, and when it is deleted.

[schnorr-proof-handler.js, line 101] /mprecise Contract The method gen-
erate should require that “options.preComputation” is not equal to 'Unde-
fined’. Being precise about contracts will simplify the code, avoid duplication,
and simplify the argument why the code is correct.

[provet.js, line 63] I/mprecise Contract In the case that the argument “ele-
ments” is undefined, the method prove will still generate a Schnorr proof. It is
not clear what this proof represents.

[prover.js, line 69] Hash computation When the hash function is called to
compute the challenge in the zero knowledge proof, it seems that the only
public value used to generate the hash is “gamma”. There are other values
that are public that could be passed to the hash generator.

[SecureMessageHelper.js, line 96] Deviation from description To prepare
the envelope with the encrypted vote, the implementation encrypts a secret
key. This secret key is not mentioned in [4]. If the secret key refers to the
randomness used to generate the encryption of the vote then this indicates a
bug in the implementation.

6.2.5 Cast-as-Intended Verification

Internet Voting Verification

Just as the voting app, the verification app consists of an embedded JavaScript.
Interestingly enough, both JavaScript programs ivapi-0.8.0-min.js (voting

app) are ivapi-0.7.0.js (verification app) are equal in substantial parts of the
code, it almost feels like the voting app runs a new newer version of the
JavaScript library than the verification app. This is very concerning as main-
tainers could easily get confused, and developers may already have done so.
The JavaScript code is started from the Android App or the iPhone app, with
“nsw-vote-verification” [MainActivity.java, line 12], which is also our entry point
for the source code review.

NSWEC-7 18

[index.js, line 91] LoginParams |t is strange that password is set to “pass-
word” and that there is a field “isforVerification”. We would have expected
that the ballot is retrieved the standard way, based on the “credID”. Where
does the voting app learn this information from? Judging from the source
code alone, it is not clear where QR-scanning and authentication are in-
voked. We suspect that this part of the code is executed after the QR code
is scanned and login details are collected. This would also explain why ran-
domness is passed to the verifier as an argument at launch time.

[ivapi-0.7.0.js, line 38067] Block 336 We could not identify the lines of
code that would indicate that randomness is computed from the seed s that
was obtained from the QR code, and must therefore assume that this com-
putation happens elsewhere.

[ivapi-0.7.0.js, line 38092] Blocks 336 It is not clear from the JavaScript
code, why the public election key was used (as required by [4]). Further-
more, it is not entirely clear, that the decryption function uses the inverse of
the quadratic residue method.

Phone Voting Verification

The software provided to us did not contain the essential modules for the
IVR system that would allowed us to review the phone voting verification.

packages2/default/config.json Typos Different default fields with a name
ending in “length” are misspelled. This could be problematic if the names are
spelled correctly when referred elsewhere.?.

6.2.6 Cleansing

The source code contains different modules that refer to cleansing. Some
functionality can be found in the pnxy-govlab/mixing module, the other in the
pnxy-govlab/cleansing. This is confusing. The code should perhaps be refac-
tored.

Our main observation and concern is that the way cleansing is implemented,
it is not software independent. The cleanser is defined in such a way that
the reasons for removing a ballot are documented and can be most likely

2See, for example, main.750c626e71564bfca248.js

NSWEC-7 19

be checked by an auditor. However, if the cleanser skips ballots (leaves too
many in the ballot box), for example, by a programming mistake or if the
cleanser is under the adversary’s control, an auditor will not have enough
information to determine if such ballots should have been cleansed. This
would mean, that if voters can revote as many times as they want (which is
the case for NSWEC), the iVote-system may be neither universal nor end-to-
end verifiable.

Regarding the specification outlined in [4], 2.6.6.1, we could not identify any
code that would do neither the ballot box verification nor the ballot box fil-
tering.® In relation to the specification outlined in [4], 2.6.1.3, we found that
the certificate verification does not check the certificate chain. We also found
that the signature of the encrypted vote is not verified.

[VerifiableMixingParser.java, line 149] Class conversion In this line, the
object “pk” is typecast to “(BCDHPublicKey) pk”. This may fail as the key
type is provider specific.

[CleansingOutput.java, line 128] Commenting The lack of useful com-
ments in the source file is not good practice.

pnyx-govlab Cleansing This module contains functionality for cleansing
ballots, whose Schnorr proof does not verify. The real cleanser appears to be
embedded in the pnyx-govlab mixing.

[CleansingService.java, line 221] Unresolved TODO comment

// TODO validations depend on SecurityModel too
// proofs for elgamal and homomorphic
// vote length for elgamal

[SelectSecureMessagesTask.java, line 74ff] Code repetition The way
how messages are distributed into batches, is programmed in a strange way.
First, there is code duplication. Second, it looks as if the last messages of

a previous batch may appear also as the first message in the next batch.
There is no problem, per se, as the SQL query in [SecureMessageJdbc-
DAO.java, line 184] uses a “<” symbol, but nevertheless, this could easily
lead to a programming mistake.

3In the case that this functionality is implemented we would appreciate a pointer to it.
Thank you.

NSWEC-7 20

[SecureMessageJdbcDAO.java, line 185] Observation Why is there a
leading “sql.”. For consistency should be removed, including the ; on the
line before. We were not given enough information about the SQL database
schemas to evaluate the quality of the query.

[CleansingValidationProcessor.java, line 72] Completeness It looks like
the Cleanser only checks that all mandatory field are provided [SecureMes-
sageOpener.java, line 159], that voter information is correct [SecureMes-
sageOpener.java, line 163], and that the fields are correctly formatted [Se-
cureMessageOpener.java, line 168], such as proof timestamp, login, and
electionID. However, we could not identify any code in the cleanser that would
remove duplicate votes from the same voter.

[SecureMessageOpener.java, line 187] Method calculateReceipt There
is no case for homomorphic, so we assume that Scytl’s implementation is
configured as “VERIFIABLE_MIXING”. Why is “homomorphic” a part of the
code base?

[4] Section 2.6.1.3 The naming of the variables in the implementation and
the names in the documentation do not mix, which renders the review more
complicated than necessary.

[SecureMessageOpenetr.java, line 330] validateCertificateChannelAnd-
Mode The validity of the certificate chain or the X509 certificate is not checked
here. This is a deviation from [4] Section 2.6.1.3.

[4] Section 2.6.1.3 The signature of the Encrypted is Vote is not checked,
at least not here. Neither is the receipt number of the vote. This is a devia-
tion from the specification.

[ReceiptVerifier, line 20] The receipt verifier inherits its “verify” method
from “BaseVerifier”. This is a bit funny, because one would think that making
a new class for “ReceiptVerifier” would also need to determine how receipts
are verified.

[5] Section 6 “The third step is to check that only the allowed number of
votes were cast”. The source code does not refer to “TOO_MANY_VOTES".

6.2.7 Mixing

The mixing module implemented in the iVote-system appears to be new and
under construction. Many error cases are not implemented completely, and

NSWEC-7 21

judging from some of the comments in the code, it is not clear what the cor-
rect functionality is. In the form the code is now, it is possible for it to crash
with an an “Unmatched exception” during mixing (as opposed to dying grace-
fully). The mathematical foundations of the mixer code are extremely chal-
lenging. The paper by Bayer and Groth present different versions of their
mixing algorithm, and judging from our review, the one that is implemented

is not the one that is described in [4].

Mixing/mixing-core

[MixingController.java, line 39] Spurious comments The mixing code has many
disconcerting comments, such as

//TODO [Marc] Warning: the caller to this method must
wait until it has finished

All such comments should be resolved by the time the code goes into pro-
duction.

Mixing/commons

[GjosteenElGamal.java,GjosteenElGamalRandomness.java, etc.] Miss-
ing exception handlers The mixing code lacks proper exception manage-
ment and therefore also maturity. This code is central to the Bayer and Groth
mixer implementation.

Mixing/mixnet-shuffle

[EIGamalShuffler.java, line 156 ff.] Lack of specification To a large extent,
the code this file appears ok, however, due to the lack of a specification, it is
impossible to judge the soundness of and completeness of the code.

[4] Section 2.6.2.2 Unwarranted claim The security proof can never show
100% security. Everything is up to negligible probabilities.

NSWEC-7 22

Mixing/proof generation

The root of all functionality in the implementation is [ShuffleProofGenera-
tion.java, line 68 ff.]

[ParallelZeroProofGenerator.java, line 62—-66] Undocumented resetting of
m This operation is not described in either of the documents. Three classes
participate in the generation of the by Bayer-Groth proof, including “FirstCom-

mitmentGenerator”, “SecondCommitmentGenerator” and “ParallelSecondAn-
swerGenerator”.

[MultiExponentianimpl.java, line 69] Omitted sources In [BaseCommit-
mentGenerator.java, line 67 and 71] the permutation is converted into a vec-
tor referred to as exponents (which is called a in [4], Protocol 1) and a ran-
dom vector called r is generated. The commitment is then computed in [Pri-
vateCommitment.java, line 63ff.]. The class “Multiexponentiator” was not
found.

[SecondCommittmentGenerator.java, line 55-56] /mmature code As
noted in the comment, if n x m > maxInt then bad things will happen. This
depends on the size of the ballotbox, but can have serious consequences.

In [4], there is no need to compute n x m, as the length of vector B is simply
N. Consequently, the length of vecx should be N and not n x m. (z is called
challengex in the code). Related, b in the documentation is a vector, whereas
bExponents is a matrix in the implementation. Very likely, the documentation
describes a simple instance of the Bayer Groth, whereas the implementation
implements what is needed to get iVote going.

ParallelISecondAnswerGenerator.java Documentation mismatch The im-
plementation does not really match the protocol as the implementation uses
multi-dimensional matrices and the documentation uses one-dimensional
vectors. We could not complete functional matching but suspect that the ex-
position in the protocol is a simplified version of what is implemented.

6.2.8 Decryption

We started the review with AbstractBallotDecryptionService.java which con-
tains the implementation of the decryption algorithm is implemented. The
main part of “ProveDec” (see [4], page 15) is implemented in Prover.java.
The implementation matches the decryption process as described in docu-
mentation.

NSWEC-7 23

[AbstractBallotDecryptionService.java, line 98] Threshold cryptography
We would have expected a threshold key share to decrypt ballots. It appears
that the election secret key must have been entirely constructed before call-
ing attempting to decrypt the ballot.

[AbstractBallotDecryptionService.java, line 98] Incompatible naming be-
tween documentation and implementation 1t would make the review much
easier, if the naming would be applied consistently.

[ZpSubgroupProofProver.java, line 494] validateDecryptionProofGenera-
torlnput 1t would be nice to more details in the design documents to assess
if these are precisely the correct validity checks, or if something is missing.
(see also validatePublicValues [Verifier.java, line 185], validateProof [Veri-
fier.java, line 207], etc.)

[Verifier.java, line 151] Variable naming The exponent should be a hash
function h, but in the code it is renamed to c. This is a bit confusing.

6.2.9 Proof of Correct Decryption

We are not totally clear on the decryption proof overall as the library code
appears to be written to support several kinds, however it does appear that
VerifiableMixer.js calls schnorr-proof-handler.js and does so with options.voterld
and options.electionld set.

If our understanding is correct, our concern is that the plaintext of the bal-

lot is not included in the hash for the proof (or at least it does not appear to
be). In the previous version of the NSWEC system this was also the case
but the ballot was encrypted using GCM so there was some argument as to
how much of what was in the encrypted ballot needed to be included in the
hash for the proof to be effective since authenticated encryption was involved
due to the use of GCM. In this case the ElIGamal encryption is solely relied
on to carry the encrypted options from the ballot so it would seem to be ap-
propriate that the plaintext going into that encryption was also included in the
hash created for the zero knowledge proof associated with the encryption.
We would like this matter to be clarified and should it be the case that further
information should be included in the hash related to the zero-knowledge
proof we would strongly encourage this to be done as the proof would be
weaker than it should be otherwise.

NSWEC-7

24

Appendix A: Spotbugs report

The following pages include the spotbugs reports for all modules that were
checked.

NSWEC-7

25

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

¢ NSWEC-iVote-source-code/cryptography/build/classes/java/main

Metrics

1050 lines of code analyzed, in 51 classes, in 8 packages.

Metric Total Density*
High Priority Warnings 3 2.86
Medium Priority Warnings 0.00
Total Warnings 3 2.86

(* Defects per Thousand lines of non-commenting source statements)

Contents

« Internationalization Warnings
¢ Details

Summary

Warning Type Number
Internationalization Warnings 3

Total 3

Warnings

Click on a warning row to see full context information.

Internationalization Warnings

NSWEC-7 26

Code Warning

Found reliance on default encoding in com.scytl.crypto.CertificateHelper.certificatesPEM(Certificate[]):

Dm java.io.ByteArrayOutputStream.toString()

Dm Fognd reliance on default encoding in com.scytl.crypto.CertificateHelper.certificatesPEM(Certificate[]):
String.getBytes()

Dm Fognd reliance on default encoding in com.scytl xml.DomHelper.serialize AndClose(OutputStream, Document):
String.getBytes()

Details

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default
platform encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative API
and specify a charset name or Charset object explicitly.

file:///tmp/cryptography_0.html 2/2

NSWEC-7

27

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-proofs/build/classes/java/main

Metrics

152 lines of code analyzed, in 7 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

28

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-elgamal/build/classes/java/main

Metrics

617 lines of code analyzed, in 20 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

29

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-commons/build/classes/java/main

Metrics

25 lines of code analyzed, in 3 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

30

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-symmetric/build/classes/java/main

Metrics

12 lines of code analyzed, in 1 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

31

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-symmetric/build/classes/java/main

Metrics

12 lines of code analyzed, in 1 classes, in 1 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

32

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-digital-envelope/build/classes/java/main

Metrics

361 lines of code analyzed, in 11 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

33

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/cryptolib/cryptolib-api-stores/build/classes/java/main

Metrics

19 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

34

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/cryptolib/cryptolib-api-stores/build/classes/java/main

Metrics

19 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

35

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-proofs/build/classes/java/main

Metrics

1789 lines of code analyzed, in 49 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 1 0.56
Medium Priority Warnings 0.00
Total Warnings 1 0.56

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Dodgy code Warnings
¢ Details

Summary

Warning Type Number
Dodgy code Warnings 1
Total 1

Warnings

Click on a warning row to see full context information.

Dodgy code Warnings

NSWEC-7 36

Code Warning

RV Return value of new java.util. ArrayList() ignored, but method has no side effect

Details

RV_RETURN_VALUE_IGNORED_NO_SIDE_EFFECT: Return value of
method without side effect is ignored

This code calls a method and ignores the return value. However our analysis shows that the method (including its
implementations in subclasses if any) does not produce any effect other than return value. Thus this call can be removed.

We are trying to reduce the false positives as much as possible, but in some cases this warning might be wrong. Common
false-positive cases include:

- The method is designed to be overridden and produce a side effect in other projects which are out of the scope of the
analysis.

- The method is called to trigger the class loading which may have a side effect.
- The method is called just to get some exception.

If you feel that our assumption is incorrect, you can use a @CheckReturnValue annotation to instruct SpotBugs that ignoring
the return value of this method is acceptable.

file:///tmp/cryptolib_17.html 2/2

NSWEC-7

37

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-certificates/build/classes/java/main

Metrics

394 lines of code analyzed, in 17 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

38

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-certificates/build/classes/java/main

Metrics

394 lines of code analyzed, in 17 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

39

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/cryptolib/cryptolib-api-asymmetric/build/classes/java/main

Metrics

21 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

40

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/cryptolib/cryptolib-mathematical/build/classes/java/main

Metrics

439 lines of code analyzed, in 9 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

41

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-scytl-keystore/build/classes/java/main

Metrics

757 lines of code analyzed, in 21 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

42

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-commons/build/classes/java/main

Metrics

550 lines of code analyzed, in 20 classes, in 7 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

43

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-commons/build/classes/java/main

Metrics

550 lines of code analyzed, in 20 classes, in 7 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

44

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-asymmetric/build/classes/java/main

Metrics

1341 lines of code analyzed, in 44 classes, in 13 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

45

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-asymmetric/build/classes/java/main

Metrics

1341 lines of code analyzed, in 44 classes, in 13 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

46

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-digital-envelope/build/classes/java/main

Metrics

44 lines of code analyzed, in 3 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

47

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-symmetric/build/classes/java/main

Metrics

594 lines of code analyzed, in 30 classes, in 9 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

48

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-primitives/build/classes/java/main

Metrics

174 lines of code analyzed, in 11 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

49

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-primitives/build/classes/java/main

Metrics

174 lines of code analyzed, in 11 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

50

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/cryptolib/cryptolib-api-asymmetric/build/classes/java/main

Metrics

21 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

51

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-scytl-keystore/build/classes/java/main

Metrics

21 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

52

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-certificates/build/classes/java/main

Metrics

737 lines of code analyzed, in 23 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

53

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-test-tools/build/classes/java/main

Metrics

301 lines of code analyzed, in 8 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

54

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-interoperation/build/classes/java/main

Metrics

3108 lines of code analyzed, in 38 classes, in 12 packages.

Metric Total Density*
High Priority Warnings 1 0.32
Medium Priority Warnings 0.00
Total Warnings 1 0.32

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Bad practice Warnings
¢ Details

Summary

Warning Type Number
Bad practice Warnings 1

Total 1

Warnings

Click on a warning row to see full context information.

Bad practice Warnings

NSWEC-7 55

Code Warning
Usage of GetResource in com.scytl.cryptolib.interoperation.js.commands.Command.evaluateScript(String) may be
unsafe if class is extended

Details

UI_INHERITANCE_UNSAFE_GETRESOURCE: Usage of GetResource
may be unsafe if class is extended

Calling this.getClass().getResource(...) could give results other than expected if this class is extended by a class in
another package.

file:///tmp/cryptolib_5.html 2/2

NSWEC-7

56

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-primitives/build/classes/java/main

Metrics

1185 lines of code analyzed, in 48 classes, in 12 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 1 0.84
Total Warnings 1 0.84

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Bad practice Warnings
¢ Details

Summary

Warning Type Number
Bad practice Warnings 1

Total 1

Warnings
Click on a warning row to see full context information.

Bad practice Warnings

NSWEC-7 57

Code Warning

com.scytl.cryptolib.primitives.primes.utils.PrimesUtils.getPrimes() may fail to close stream

Details

OS_OPEN_STREAM: Method may fail to close stream

The method creates an IO stream object, does not assign it to any fields, pass it to other methods that might close it, or return
it, and does not appear to close the stream on all paths out of the method. This may result in a file descriptor leak. It is
generally a good idea to use a finally block to ensure that streams are closed.

file:///tmp/cryptolib_6.html 2/2

NSWEC-7

58

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-api-elgamal/build/classes/java/main

Metrics

698 lines of code analyzed, in 21 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

59

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-stores/build/classes/java/main

Metrics

106 lines of code analyzed, in 7 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

60

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/cryptolib/cryptolib-stores/build/classes/java/main

Metrics

106 lines of code analyzed, in 7 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixnet-engine/build/classes/java/main

Metrics

548 lines of code analyzed, in 14 classes, in 4 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 2 3.65
Total Warnings 2 3.65

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Bad practice Warnings
e Malicious code vulnerability Warnings

¢ Details
Summary
Warning Type Number
Bad practice Warnings 1
Malicious code vulnerability Warnings 1
Total 2
Warnings

Click on a warning row to see full context information.

NSWEC-7 62

Bad practice Warnings

Code Warning

com.scytl.products.ov.mixnet.mvc. VerifyingController.verify(ApplicationConfig, LocationsProvider) has Boolean
return type and returns explicit null

Malicious code vulnerability Warnings

Code Warning

new com.scytl.products.ov.mixnet.batches.MixingBatch(int, BGMixer, ElGamalEncryptedBallots, Integer, int,
BGParams, ZpSubgroup, GjosteenElGamal, ApplicationConfig, int, ElGamalPublicKey, ElGamalPrivateKey,
LocationsProvider, MultiExponentiation, ParallelComputeAllE, Randomness[], List, PrimitivesServiceAPI) may
expose internal representation by storing an externally mutable object into MixingBatch._batchRandomness

Details

EI_EXPOSE_REP2: May expose internal representation by incorporating
reference to mutable object
This code stores a reference to an externally mutable object into the internal representation of the object. If instances are

accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other important
properties, you will need to do something different. Storing a copy of the object is better approach in many situations.

NP_BOOLEAN_RETURN_NULL: Method with Boolean return type returns
explicit null

A method that returns either Boolean.TRUE, Boolean.FALSE or null is an accident waiting to happen. This method can be
invoked as though it returned a value of type boolean, and the compiler will insert automatic unboxing of the Boolean value.
If a null value is returned, this will result in a NullPointerException.

file:///tmp/mixnet-verifier_0.html 2/2

NSWEC-7 63

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

o NSWEC-iVote-source-code/mixnet-verifier/mixnet-tools/build/classes/java/main

Metrics

1508 lines of code analyzed, in 44 classes, in 9 packages.

Metric Total Density*
High Priority Warnings 5 3.32
Medium Priority Warnings 37 24.54
Total Warnings 42 27.85

(* Defects per Thousand lines of non-commenting source statements)

Contents

Bad practice Warnings
Correctness Warnings
Experimental Warnings
Internationalization Warnings
Dodgy code Warnings
Details

Summary

Warning Type Number
Bad practice Warnings 2

Correctness Warnings 1

Experimental Warnings 5
Internationalization Warnings 2
Dodgy code Warnings 32
Total 42

NSWEC-7 64

Warnings
Click on a warning row to see full context information.
Bad practice Warnings

Code Warning
Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.products.ov.mixnet.tools.actions.generation.FullGenerationAction.exportPublicKey(ElGamalKeyPair, Path)

Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.products.ov.mixnet.tools.actions.generation. KeyPairGenerationAction.exportPublicKey(ElGamalKeyPair, Path)

Correctness Warnings

Code Warning

Unwritten field: com.scytl.products.ov.mixnet.tools.benchmark.Paralle]BGMixnetParametersBenchmark.pubKey

Experimental Warnings

Code Warning
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init() may fail to clean up java.io.InputStream

com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.testBGMixnetShuffle AndProofsWithIOParallel()
may fail to clean up java.io.InputStream

com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.testBGMixnetShuffle AndProofsWithIOParallel()
may fail to clean up java.io.OutputStream

com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.initProofGeneration() may fail to
clean up java.io.InputStream

com.scytl.products.ov.mixnet.tools.benchmark.Paralle]BGMixnetParametersBenchmark.testParametersSuitabilityParallel()
may fail to clean up java.io.InputStream

Internationalization Warnings

Code Warning

Found reliance on default encoding in com.scytl.products.ov.mixnet.tools.actions.generation.io.BallotsWriter.write(List, Path,

String): new java.io.FileWriter(File)

Found reliance on default encoding in

Dm com.scytl.products.ov.mixnet.tools.actions.generation.io.EncryptionParamsWriter.write(ZpSubgroup, Path, String): new
java.io.FileWriter(File)

Dm

Dodgy code Warnings

Code Warning
Possible null pointer dereference in
com.scytl.products.ov.mixnet.tools.actions.generation.FullGenerationAction.exportPublicKey(ElGamalKeyPair, Path) due to
return value of called method
Possible null pointer dereference in
com.scytl.products.ov.mixnet.tools.actions.generation.KeyPairGenerationAction.exportPublicKey(ElGamalKeyPair, Path) due
to return value of called method
Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.computeAllE from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()
Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.config from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

NSWEC-7 65

ST

ST

ST

Write to static field
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.elGamalEncryptedBallotsLoader from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.encryptedBallots from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.m from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.multiExponentiation from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.n from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.pars from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.proofsWriter from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.pubKey from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.shuffler from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.zp from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.encryptedBallots from
instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetBenchmark.testBGMixnetShuffleAndProofsWithIOParallel()
Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.concurrencyLevel
from instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.computeAllE
from instance method com.scytl.products.ov.mixnet.tools.benchmark.Paralle]BGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.config from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.elGamal EncryptedBallotsLoader
from instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.multiExponentiation from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.n from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.numBallots from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.pars from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.shuffler from
instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.sufixEncParams
from instance method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.zp from instance
method com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.encryptedBallots
from instance method
com.scytl.products.ov.mixnet.tools.benchmark.ParallelBGMixnetParametersBenchmark.testParametersSuitabilityParallel()
Write to static field com.scytl.products.ov.mixnet.tools.benchmark.PermutationBenchmark.listCiphertext1 from instance
method com.scytl.products.ov.mixnet.tools.benchmark.PermutationBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.PermutationBenchmark.listCiphertext2 from instance
method com.scytl.products.ov.mixnet.tools.benchmark.PermutationBenchmark.init()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.TutorialBenchmark.counter from instance method

NSWEC-7 66

com.scytl.products.ov.mixnet.tools.benchmark. TutorialBenchmark.finish()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.TutorialBenchmark.counter from instance method
com.scytl.products.ov.mixnet.tools.benchmark.Tutorial Benchmark.addOne()

Write to static field com.scytl.products.ov.mixnet.tools.benchmark.TutorialBenchmark.counter from instance method
com.scytl.products.ov.mixnet.tools.benchmark. Tutorial Benchmark.addTwo()

Details

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default platform
encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative API and specify a
charset name or Charset object explicitly.

NP_NULL_ON_SOME_PATH_FROM_RETURN_VALUE: Possible null pointer
dereference due to return value of called method

The return value from a method is dereferenced without a null check, and the return value of that method is one that should
generally be checked for null. This may lead to a NullPointerException when the code is executed.

OBL_UNSATISFIED_OBLIGATION: Method may fail to clean up stream or
resource

This method may fail to clean up (close, dispose of) a stream, database object, or other resource requiring an explicit cleanup
operation.

In general, if a method opens a stream or other resource, the method should use a try/finally block to ensure that the stream or
resource is cleaned up before the method returns.

This bug pattern is essentially the same as the OS_OPEN_STREAM and ODR_OPEN_DATABASE_RESOURCE bug patterns, but
is based on a different (and hopefully better) static analysis technique. We are interested is getting feedback about the usefulness of
this bug pattern. For sending feedback, check:

» contributing guideline
o malinglist

In particular, the false-positive suppression heuristics for this bug pattern have not been extensively tuned, so reports about false
positives are helpful to us.

See Weimer and Necula, Finding and Preventing Run-Time Error Handling Mistakes, for a description of the analysis technique.

RV_RETURN_VALUE_IGNORED_BAD_PRACTICE: Method ignores
exceptional return value

This method returns a value that is not checked. The return value should be checked since it can indicate an unusual or unexpected
function execution. For example, the File.delete() method returns false if the file could not be successfully deleted (rather than

throwing an Exception). If you don't check the result, you won't notice if the method invocation signals unexpected behavior by
returning an atypical return value.

ST WRITE_TO_STATIC_FROM_INSTANCE_METHOD: Write to static field
from instance method

This instance method writes to a static field. This is tricky to get correct if multiple instances are being manipulated, and generally
bad practice.

NSWEC-7 67

UWF_UNWRITTEN_FIELD: Unwritten field

This field is never written. All reads of it will return the default value. Check for errors (should it have been initialized?), or remove
it if it is useless.

file:///tmp/mixnet-verifier_10.html 5/5

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

¢ NSWEC-iVote-source-code/mixnet-verifier/mixnet-prover/build/classes/java/main

Metrics

1491 lines of code analyzed, in 49 classes, in 9 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 10 6.71
Total Warnings 10 6.71

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Malicious code vulnerability Warnings
e Details

Summary

Warning Type Number

Malicious code vulnerability Warnings 10

Total 10

Warnings
Click on a warning row to see full context information.
Malicious code vulnerability Warnings

Code Warning
com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData.getEncryptedCiphertexts() may expose internal

NSWEC-7 69

representation by returning ShuffleProofInputData._encryptedCiphertexts

com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData.getReencryptedCiphertexts() may expose internal
representation by returning ShuffleProofInputData._reencryptedCiphertexts

com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData.getRho() may expose internal representation by
returning ShuffleProofInputData._rho

new
com.scytl.products.ov.mixnet.proofs.bg.multiexp.MultiExponentiationProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Randomness|[], BasicProofGenerator, ReductionProofGenerator) may expose internal representation by
storing an externally mutable object into MultiExponentiationProofGenerator._ciphertexts

new
com.scytl.products.ov.mixnet.proofs.bg.multiexp.MultiExponentiationProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Randomness|[], BasicProofGenerator, ReductionProofGenerator) may expose internal representation by
storing an externally mutable object into MultiExponentiationProofGenerator._initialRandomExponents

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofGenerator(ProofsGeneratorConfigurationParams,
CommitmentParams, Ciphertext[][], Permutation, PrivateAndPublicCommitmentsGenerator, MultiExponentiation, int,
Ciphertext[][], Randomness[], ComputeAllE) may expose internal representation by storing an externally mutable object into
ShuffleProofGenerator._original Ciphertexts

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofGenerator(ProofsGeneratorConfigurationParams,
CommitmentParams, Ciphertext[][], Permutation, PrivateAndPublicCommitmentsGenerator, MultiExponentiation, int,
Ciphertext[][], Randomness[], ComputeAllE) may expose internal representation by storing an externally mutable object into
ShuffleProofGenerator._reEncryptedCiphertexts

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by storing an
externally mutable object into ShuffleProofInputData._encryptedCiphertexts

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by storing an
externally mutable object into ShuffleProofInputData._reencryptedCiphertexts

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by storing an
externally mutable object into ShuffleProofInputData._rho

Details

EI_EXPOSE_REP: May expose internal representation by returning reference to
mutable object

Returning a reference to a mutable object value stored in one of the object's fields exposes the internal representation of the object.
If instances are accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other
important properties, you will need to do something different. Returning a new copy of the object is better approach in many
situations.

EI_EXPOSE_REP2: May expose internal representation by incorporating
reference to mutable object

This code stores a reference to an externally mutable object into the internal representation of the object. If instances are accessed
by untrusted code, and unchecked changes to the mutable object would compromise security or other important properties, you
will need to do something different. Storing a copy of the object is better approach in many situations.

file:///tmp/mixnet-verifier_1.html 2/2

NSWEC-7

70

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixnet-spring/build/classes/java/main

Metrics

96 lines of code analyzed, in 2 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

71

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

¢ NSWEC-iVote-source-code/mixnet-verifier/mixing-prover/build/classes/java/main

Metrics

2213 lines of code analyzed, in 56 classes, in 9 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 18 8.13
Total Warnings 18 8.13

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Malicious code vulnerability Warnings
¢ Details

Summary

Warning Type Number
Malicious code vulnerability Warnings 18

Total 18

Warnings

Click on a warning row to see full context information.

Malicious code vulnerability Warnings

NSWEC-7 72

Code Warning

com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData.getEncryptedCiphertexts() may expose internal
representation by returning ShuffleProofInputData._encryptedCiphertexts

com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData.getReencryptedCiphertexts() may expose internal
representation by returning ShuffleProofInputData._reencryptedCiphertexts

com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData.getRho() may expose internal representation by
returning ShuffleProofInputData._rho

new com.scytl.ov.mixing.proofs.bg hadamard.HadamardProductProofVerifier(int, int, CommitmentParams,
PublicCommitment[], PublicCommitment, BigInteger, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into HadamardProductProof Verifier._cA

new com.scytl.ov.mixing.proofs.bg.multiexp.basic.MultiExponentiationBasicProofVerifier(int, int, Cryptosystem,
CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], BigInteger, CiphertextTools,
MultiExponentiation) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofVerifier._cA

new com.scytl.ov.mixing.proofs.bg.multiexp.basic.MultiExponentiationBasicProofVerifier(int, int, Cryptosystem,
CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], BigInteger, CiphertextTools,
MultiExponentiation) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProof Verifier._vecC

new
com.scytl.ov.mixing.proofs.bg.multiexp.MultiExponentiationProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Randomness[], BasicProofGenerator, ReductionProofGenerator) may expose internal representation
by storing an externally mutable object into MultiExponentiationProofGenerator._ciphertexts

new
com.scytl.ov.mixing.proofs.bg.multiexp.MultiExponentiationProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Randomness[], BasicProofGenerator, ReductionProofGenerator) may expose internal representation
by storing an externally mutable object into MultiExponentiationProofGenerator._initialRandomExponents

new com.scytl.ov.mixing.proofs.bg.multiexp.reduction.MultiExponentiationReductionProof Verifier(int, int,
Cryptosystem, ZpSubgroup, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], int, int,
CiphertextTools, MultiExponentiation) may expose internal representation by storing an externally mutable object
into MultiExponentiationReductionProofVerifier._cA

new com.scytl.ov.mixing.proofs.bg.multiexp.reduction.MultiExponentiationReductionProof Verifier(int, int,
Cryptosystem, ZpSubgroup, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], int, int,
CiphertextTools, MultiExponentiation) may expose internal representation by storing an externally mutable object
into MultiExponentiationReductionProof Verifier. vecC

new com.scytl.ov.mixing.proofs.bg.product.ProductProofVerifier(int, int, CommitmentParams, PublicCommitment[],
Exponent, BigInteger, MultiExponentiation, int) may expose internal representation by storing an externally mutable
object into ProductProofVerifier._cA

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Permutation, PrivateAndPublicCommitmentsGenerator, MultiExponentiation, Ciphertext[][],
Randomness[], ComputeAllE) may expose internal representation by storing an externally mutable object into
ShuffleProofGenerator._original Ciphertexts

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofGenerator(ProofsGeneratorConfigurationParams,
Ciphertext[][], Permutation, PrivateAndPublicCommitmentsGenerator, MultiExponentiation, Ciphertext[][],
Randomness[], ComputeAllE) may expose internal representation by storing an externally mutable object into
ShuffleProofGenerator._reEncryptedCiphertexts

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by
storing an externally mutable object into ShuffleProofInputData._encryptedCiphertexts

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by
storing an externally mutable object into ShuffleProofInputData._reencryptedCiphertexts

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofInputData(Ciphertext[][], Permutation,
PrivateAndPublicCommitmentsGenerator, Ciphertext[][], Randomness[]) may expose internal representation by
storing an externally mutable object into ShuffleProofInputData._rho

NSWEC-7 73

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofVerifier(ZpSubgroup, Cryptosystem, CommitmentParams,
Ciphertext[][], Ciphertext[][], BGParams, CiphertextTools, MultiExponentiation, int) may expose internal
representation by storing an externally mutable object into ShuffleProofVerifier._C

new com.scytl.ov.mixing.proofs.bg.shuffle.ShuffleProofVerifier(ZpSubgroup, Cryptosystem, CommitmentParams,
Ciphertext[][], Ciphertext[][], BGParams, CiphertextTools, MultiExponentiation, int) may expose internal
representation by storing an externally mutable object into ShuffleProofVerifier._Cprime

Details

EI_EXPOSE_REP: May expose internal representation by returning
reference to mutable object

Returning a reference to a mutable object value stored in one of the object's fields exposes the internal representation of the
object. If instances are accessed by untrusted code, and unchecked changes to the mutable object would compromise
security or other important properties, you will need to do something different. Returning a new copy of the object is better
approach in many situations.

EI_EXPOSE_REP2: May expose internal representation by incorporating
reference to mutable object

This code stores a reference to an externally mutable object into the internal representation of the object. If instances are
accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other important
properties, you will need to do something different. Storing a copy of the object is better approach in many situations.

file:///tmp/mixnet-verifier_3.html 3/3

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixnet-mixer/build/classes/java/main

Metrics

376 lines of code analyzed, in 12 classes, in 2 packages.

Metric Total Density*
High Priority Warnings 1 2.66
Medium Priority Warnings 0.00
Total Warnings 1 2.66

(* Defects per Thousand lines of non-commenting source statements)

Contents

« Internationalization Warnings
¢ Details

Summary

Warning Type Number
Internationalization Warnings 1

Total 1

Warnings

Click on a warning row to see full context information.

Internationalization Warnings

NSWEC-7 75

Code Warning
Found reliance on default encoding in com.scytl.products.ov.mixnet.io.VotesWithProofWriter.write(OutputStream,

Dm OutputStream, Stream): new java.io.OutputStreamWriter(OutputStream)

Details

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default
platform encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative API
and specify a charset name or Charset object explicitly.

file:///tmp/mixnet-verifier_4.html 2/2

NSWEC-7

76

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixing-core/build/classes/java/main

Metrics

865 lines of code analyzed, in 38 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixnet-verifier/build/classes/java/main

Metrics

841 lines of code analyzed, in 8 classes, in 8 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 9 10.70
Total Warnings 9 10.70

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Malicious code vulnerability Warnings
e Dodgy code Warnings

¢ Details
Summary
Warning Type Number
Malicious code vulnerability Warnings 8
Dodgy code Warnings 1
Total 9
Warnings

Click on a warning row to see full context information.

NSWEC-7 78

Malicious code vulnerability Warnings

Code Warning

new com.scytl.products.ov.mixnet.proofs.bg hadamard.HadamardProductProofVerifier(int, int, CommitmentParams,
PublicCommitment[], PublicCommitment, BigInteger, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into HadamardProductProof Verifier._cA

new com.scytl.products.ov.mixnet.proofs.bg.multiexp.basic.MultiExponentiationBasicProof Verifier(int, int,
Cryptosystem, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], BigInteger, CiphertextTools,
MultiExponentiation) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofVerifier._cA

new com.scytl.products.ov.mixnet.proofs.bg.multiexp.basic.MultiExponentiationBasicProof Verifier(int, int,
Cryptosystem, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], BigInteger, CiphertextTools,
MultiExponentiation) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofVerifier._vecC

new com.scytl.products.ov.mixnet.proofs.bg.multiexp.reduction.MultiExponentiationReductionProof Verifier(int, int,
Cryptosystem, ZpSubgroup, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], int, int,
CiphertextTools, MultiExponentiation) may expose internal representation by storing an externally mutable object
into MultiExponentiationReductionProofVerifier._cA

new com.scytl.products.ov.mixnet.proofs.bg.multiexp.reduction.MultiExponentiationReductionProof Verifier(int, int,
Cryptosystem, ZpSubgroup, CommitmentParams, Ciphertext[][], Ciphertext, PublicCommitment[], int, int,
CiphertextTools, MultiExponentiation) may expose internal representation by storing an externally mutable object
into MultiExponentiationReductionProofVerifier._vecC

new com.scytl.products.ov.mixnet.proofs.bg.product.ProductProof Verifier(int, int, CommitmentParams,
PublicCommitment[], Exponent, BigInteger, MultiExponentiation, int) may expose internal representation by storing
an externally mutable object into ProductProofVerifier. cA

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProof Verifier(ZpSubgroup, Cryptosystem,
CommitmentParams, Ciphertext[][], Ciphertext[][], int, int, int, int, CiphertextTools, MultiExponentiation, int) may
expose internal representation by storing an externally mutable object into ShuffleProofVerifier._C

new com.scytl.products.ov.mixnet.proofs.bg.shuffle.ShuffleProof Verifier(ZpSubgroup, Cryptosystem,
CommitmentParams, Ciphertext[][], Ciphertext[][], int, int, int, int, CiphertextTools, MultiExponentiation, int) may
expose internal representation by storing an externally mutable object into ShuffleProofVerifier._Cprime

Dodgy code Warnings

Code Warning

Exception is caught when Exception is not thrown in
com.scytl.products.ov.mixnet.BG Verifier.verify(ApplicationConfig, LocationsProvider)

Details

EI_EXPOSE_REP2: May expose internal representation by incorporating
reference to mutable object
This code stores a reference to an externally mutable object into the internal representation of the object. If instances are

accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other important
properties, you will need to do something different. Storing a copy of the object is better approach in many situations.

REC_CATCH_EXCEPTION: Exception is caught when Exception is not
thrown

NSWEC-7 79

This method uses a try-catch block that catches Exception objects, but Exception is not thrown within the try block, and
RuntimeException is not explicitly caught. It is a common bug pattern to say try { ... } catch (Exception e) { something } as
a shorthand for catching a number of types of exception each of whose catch blocks is identical, but this construct also
accidentally catches RuntimeException as well, masking potential bugs.

A better approach is to either explicitly catch the specific exceptions that are thrown, or to explicitly catch
RuntimeException exception, rethrow it, and then catch all non-Runtime Exceptions, as shown below:

try {

} catch (RuntimeException e) {
throw e;
} catch (Exception e) {
deal with all non-runtime exceptions
}

file:///tmp/mixnet-verifier_6.html 3/3

NSWEC-7

80

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

e NSWEC-iVote-source-code/mixnet-verifier/mixnet-shuffler/build/classes/java/main

Metrics

182 lines of code analyzed, in 6 classes, in 3 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

* NSWEC-iVote-source-code/mixnet-verifier/mixing-commons/build/classes/java/main

Metrics

3416 lines of code analyzed, in 130 classes, in 25 packages.

Metric Total Density*
High Priority Warnings 6 1.76
Medium Priority Warnings 86 25.18
Total Warnings 92 26.93

(* Defects per Thousand lines of non-commenting source statements)

Contents

Bad practice Warnings
Internationalization Warnings
Malicious code vulnerability Warnings
Performance Warnings

Dodgy_code Warnings

Details

Summary

Warning Type Number
Bad practice Warnings 7
Internationalization Warnings 6

Malicious code vulnerability Warnings 72

Performance Warnings 3
Dodgy code Warnings 4
Total 92

Warnings

Click on a warning row to see full context information.

NSWEC-7 82

Bad practice Warnings

Code Warning

Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.ov.mixing.commons.configuration.file.FileBased ApplicationConfig.convertMixer(FileBasedMixerConfig, Integer,
Integer)

Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.ov.mixing.commons.configuration.file.FileBased ApplicationConfig.convertVerifier(FileBased VerifierConfig, Integer,
Integer)

Class com.scytl.ov.mixing.commons.concurrent.LoopParallelizerAction defines non-transient non-serializable instance field _ranges
Class com.scytl.ov.mixing.commons.concurrent.LoopParallelizerAction defines non-transient non-serializable instance field process

Class com.scytl.ov.mixing.commons.concurrent.LoopParallelizerTask defines non-transient non-serializable instance field
_operation

Class com.scytl.ov.mixing.commons.concurrent.LoopParallelizerTask defines non-transient non-serializable instance field _ranges
Class com.scytl.ov.mixing.commons.concurrent.LoopParallelizerTask defines non-transient non-serializable instance field process

Internationalization Warnings

Code Warning

Dm

Found reliance on default encoding in
com.scytl.ov.mixing.commons.configuration.file.FileBasedApplicationConfig.convertToStreamConfig(FileBased ApplicationConfig):
new java.io.FileReader(File)

Found reliance on default encoding in
com.scytl.ov.mixing.commons.io.CommitmentParamsReader.readCommitmentParamsFromStream(ZpSubgroup, InputStream): new
java.io.InputStreamReader(InputStream)

Found reliance on default encoding in com.scytl.ov.mixing.commons.io.ElGamalEncryptedBallotsLoader.loadCSV(ZpSubgroup,
InputStream): new java.io.InputStreamReader(InputStream)

Found reliance on default encoding in
com.scytl.ov.mixing.commons.io.ElgamalPublicKeyReader.readPublicKeyFromStream(InputStream): new
java.io.InputStreamReader(InputStream)

Found reliance on default encoding in new com.scytl.ov.mixing.commons.io.HashCalculatingWriter(OutputStream, MessageDigest):
new com.scytl.ov.mixing.commons.io.HashCalculatingWriter(OutputStream)

Found reliance on default encoding in com.scytl.ov.mixing.commons.tools.RandomOracleHash.getHash(): String.getBytes()

Malicious code vulnerability Warnings

Code Warning

com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof.getFirstAnswer() may expose internal representation by returning
BayerGrothProof._firstAnswer

com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof.getInitialMessage() may expose internal representation by returning
BayerGrothProof._initialMessage
com.scytl.ov.mixing.commons.beans.proofs.HadamardProductProofInitialMessage.getCommitmentPublicB() may expose internal
representation by returning HadamardProductProofInitialMessage._cB
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProof Answer.getExponentsA() may expose internal
representation by returning MultiExponentiationBasicProofAnswer._a
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage.getCiphertextsE() may expose internal
representation by returning MultiExponentiationBasicProofInitialMessage._E
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage.getCommitmentPublicB() may expose
internal representation by returning MultiExponentiationBasicProofInitialMessage._cB
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionAnswer.getExponentsB() may expose internal
representation by returning MultiExponentiationReductionAnswer._b
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionInitialMessage.getCiphertextsE() may expose internal
representation by returning MultiExponentiationReductionInitialMessage._E
com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionInitialMessage.getCommitmentPublicB() may expose
internal representation by returning MultiExponentiationReductionInitialMessage._cb
com.scytl.ov.mixing.commons.beans.proofs.SingleValueProductProof Answer.getExponentsTildeA() may expose internal
representation by returning SingleValueProductProofAnswer._tildeA

NSWEC-7 83

com.scytl.ov.mixing.commons.beans.proofs.SingleValueProductProof Answer.getExponentsTildeB() may expose internal
representation by returning SingleValueProductProofAnswer._tildeB
com.scytl.ov.mixing.commons.beans.proofs.ZeroProof Answer.getExponentsA() may expose internal representation by returning
ZeroProofAnswer._a

com.scytl.ov.mixing.commons.beans.proofs.ZeroProof Answer.getExponentsB() may expose internal representation by returning
ZeroProof Answer._b

com.scytl.ov.mixing.commons.beans.proofs.ZeroProofInitialMessage.getCommitmentPublicD() may expose internal representation
by returning ZeroProofInitialMessage._cD

com.scytl.ov.mixing.commons.beans.ShuffleOutput.getExponents() may expose internal representation by returning
ShuffleOutput._exponents

com.scytl.ov.mixing.commons.beans. WarmUpOutput.getRandomExponents() may expose internal representation by returning
WarmUpOutput._randomExponents

com.scytl.ov.mixing.commons.proofs.bg.commitments. CommitmentParams.getG() may expose internal representation by returning
CommitmentParams._g

com.scytl.ov.mixing.commons.proofs.bg.commitments.PrivateCommitment.getM() may expose internal representation by returning
PrivateCommitment._exponents

new com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof(PublicCommitment[], PublicCommitment[],
ShuffleProofSecondAnswer, CommitmentParams) may expose internal representation by storing an externally mutable object into
BayerGrothProof._firstAnswer

new com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof(PublicCommitment[], PublicCommitment[],
ShuffleProofSecondAnswer, CommitmentParams) may expose internal representation by storing an externally mutable object into
BayerGrothProof._initialMessage
com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof$Builder.withFirstAnswer(PublicCommitment[]) may expose internal
representation by storing an externally mutable object into BayerGrothProof$Builder._firstAnswer
com.scytl.ov.mixing.commons.beans.proofs.BayerGrothProof$Builder.withInitialMessage(PublicCommitment[]) may expose
internal representation by storing an externally mutable object into BayerGrothProof$Builder._initialMessage

new com.scytl.ov.mixing.commons.beans.proofs.HadamardProductProofInitialMessage(PublicCommitment[], int) may expose
internal representation by storing an externally mutable object into HadamardProductProofInitialMessage._cB

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProof Answer(Exponent[], Exponent, Exponent,
Exponent, Randomness) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofAnswer._a

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PrivateCommitment,
PrivateCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage._E

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PublicCommitment,
PublicCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage. E

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PublicCommitment,
PublicCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage._cB

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationBasicProofInitialMessage, MultiExponentiationBasicProof Answer) may expose internal representation by
storing an externally mutable object into MultiExponentiationReductionAnswer._b

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationBasicProofInitialMessage, MultiExponentiationBasicProof Answer,
MultiExponentiationReductionInitialMessage, MultiExponentiationReductionAnswer) may expose internal representation by
storing an externally mutable object into MultiExponentiationReductionAnswer._b

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationReductionInitialMessage, MultiExponentiationReductionAnswer) may expose internal representation by
storing an externally mutable object into MultiExponentiationReductionAnswer._b

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PrivateCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into
MultiExponentiationReductionInitialMessage._E

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PublicCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into
MultiExponentiationReductionInitialMessage._E

new com.scytl.ov.mixing.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PublicCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into
MultiExponentiationReductionInitialMessage._cb

new com.scytl.ov.mixing.commons.beans.proofs.Single ValueProductProof Answer(Exponent[], Exponent[], Exponent, Exponent)

NSWEC-7 84

may expose internal representation by storing an externally mutable object into SingleValueProductProofAnswer._tildeA

new com.scytl.ov.mixing.commons.beans.proofs.SingleValueProductProof Answer(Exponent[], Exponent[], Exponent, Exponent)
may expose internal representation by storing an externally mutable object into SingleValueProductProof Answer._tildeB

new com.scytl.ov.mixing.commons.beans.proofs.ZeroProof Answer(Exponent[], Exponent[], Exponent, Exponent, Exponent) may
expose internal representation by storing an externally mutable object into ZeroProof Answer._a

new com.scytl.ov.mixing.commons.beans.proofs.ZeroProof Answer(Exponent[], Exponent[], Exponent, Exponent, Exponent) may
expose internal representation by storing an externally mutable object into ZeroProof Answer._b

new com.scytl.ov.mixing.commons.beans.proofs.ZeroProofInitialMessage(PublicCommitment, PublicCommitment,
PublicCommitment[], int) may expose internal representation by storing an externally mutable object into
ZeroProofInitialMessage._cD

new com.scytl.ov.mixing.commons.beans.ShuffleOutput(Permutation, Randomness[], Object) may expose internal representation
by storing an externally mutable object into ShuffleOutput._exponents

new com.scytl.ov.mixing.commons.beans.WarmUpOutput(Randomness[], List) may expose internal representation by storing an
externally mutable object into WarmUpOutput._randomExponents

new com.scytl.ov.mixing.commons.concurrent.processor.AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._B

new com.scytl.ov.mixing.commons.concurrent.processor.AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._E

new com.scytl.ov.mixing.commons.concurrent.processor.AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._Ex

new com.scytl.ov.mixing.commons.concurrent.processor.EncryptConcurrentCalculatorProcessor(Randomness[], List,
Cryptosystem, ZpSubgroup) may expose internal representation by storing an externally mutable object into
EncryptConcurrentCalculatorProcessor._randomExponents

new com.scytl.ov.mixing.commons.concurrent.processor.EncryptRaisingToRandomProcessor(Ciphertext[], Exponent[],
Randomness[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._E

new com.scytl.ov.mixing.commons.concurrent.processor.EncryptRaising ToRandomProcessor(Ciphertext[], Exponent[],
Randomness[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._b

new com.scytl.ov.mixing.commons.concurrent.processor.EncryptRaisingToRandomProcessor(Ciphertext[], Exponent][],
Randomness|[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._tau

new com.scytl.ov.mixing.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
Biglnteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._a

new com.scytl.ov.mixing.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
Biglnteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._evalC

new com.scytl.ov.mixing.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
BiglInteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._vandermondeOmega

new com.scytl.ov.mixing.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
Biglnteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._vecC

new com.scytl.ov.mixing.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._C

new com.scytl.ov.mixing.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._E

new com.scytl.ov.mixing.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._e

new com.scytl.ov.mixing.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess(ZpGroupElement[],
Exponent[], CommitmentParams, MultiExponentiation) may expose internal representation by storing an externally mutable object
into LimMultiExpoConcurrentCalculatorProcess._base

new com.scytl.ov.mixing.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess(ZpGroupElement][],
Exponent[], CommitmentParams, MultiExponentiation) may expose internal representation by storing an externally mutable object
into LimMultiExpoConcurrentCalculatorProcess._exponents

new com.scytl.ov.mixing.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by
storing an externally mutable object into NextCiphertextsAndCAPrimeProcessor._cA

new com.scytl.ov.mixing.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],

NSWEC-7 85

PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by
storing an externally mutable object into NextCiphertextsAndCAPrimeProcessor._cAprime

new com.scytl.ov.mixing.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by
storing an externally mutable object into NextCiphertextsAndCAPrimeProcessor._ciphertexts

new com.scytl.ov.mixing.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by
storing an externally mutable object into NextCiphertextsAndCAPrimeProcessor._nextCiphertexts

new com.scytl.ov.mixing.commons.concurrent.processor.PreComputationCalculatorProcessor(ZpGroupElement[], Randomness|],
Cryptosystem) may expose internal representation by storing an externally mutable object into
PreComputationCalculatorProcessor._arrayOfldentityElement

new com.scytl.ov.mixing.commons.concurrent.processor.PreComputationCalculatorProcessor(ZpGroupElement[], Randomness[],
Cryptosystem) may expose internal representation by storing an externally mutable object into
PreComputationCalculatorProcessor._requiredRandomExponents

new com.scytl.ov.mixing.commons.concurrent.processor.Private AndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into PrivateAndPublicCommitmentProcessor._exponents

new com.scytl.ov.mixing.commons.concurrent.processor.Private AndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into Private AndPublicCommitmentProcessor._privateCommitments

new com.scytl.ov.mixing.commons.concurrent.processor.PrivateAndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into PrivateAndPublicCommitmentProcessor._publicCommitments

new com.scytl.ov.mixing.commons.concurrent.processor.Private AndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation
by storing an externally mutable object into PrivateAndPublicCommitmentProcessor._r

new com.scytl.ov.mixing.commons.concurrent.processor.PublicCommitmentCalculatorProcess(PublicCommitment][],
PrivateCommitment[]) may expose internal representation by storing an externally mutable object into
PublicCommitmentCalculatorProcess._privateCommitments

new com.scytl.ov.mixing.commons.concurrent.processor.PublicCommitmentCalculatorProcess(PublicCommitment[],
PrivateCommitment[]) may expose internal representation by storing an externally mutable object into
PublicCommitmentCalculatorProcess._publicCommitments

new com.scytl.ov.mixing.commons.homomorphic.impl.GjosteenElGamal(ZpSubgroup, Exponent[]) may expose internal
representation by storing an externally mutable object into GjosteenElGamal._privateKey

new com.scytl.ov.mixing.commons.homomorphic.impl.GjosteenElGamalPlaintext(ZpGroupElement[]) may expose internal
representation by storing an externally mutable object into GjosteenElGamalPlaintext._m

new com.scytl.ov.mixing.commons.mathematical.tools.LUDecomposition(Exponent[][], BigInteger) may expose internal
representation by storing an externally mutable object into LUDecomposition._lu

new com.scytl.ov.mixing.commons.proofs.bg.commitments.CommitmentParams(ZpSubgroup, ZpGroupElement,
ZpGroupElement[]) may expose internal representation by storing an externally mutable object into CommitmentParams._g

Performance Warnings

Code Warning

com.scytl.ov.mixing.commons.io.ciphertext.CiphertextSerializer.serialize(Ciphertext, JsonGenerator, SerializerProvider)
concatenates strings using + in a loop

Unread field: com.scytl.ov.mixing.commons.io.ElGamalEncryptedBallotEntryParser. PATTERN; should this field be static?

Unread field: com.scytl.ov.mixing.commons.tools.UniversalElGamalEncryptionParamsGenerator. CERTAINTY_LEVEL; should
this field be static?

Dodgy code Warnings

Code Warning
instanceof will always return true for all non-null values in
com.scytl.ov.mixing.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess.getZpGroup(ZpSubgroup), since
all com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup are instances of
com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup
instanceof will always return true for all non-null values in
com.scytl.ov.mixing.commons.proofs.bg.commitments. CommitmentParams.extractZpGroup(ZpSubgroup), since all

NSWEC-7 86

com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup are instances of
com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup

Dead store to reconstructedZpGroup in
com.scytl.ov.mixing.commons.io.CommitmentParamsReader.readCommitmentParamsFromStream(ZpSubgroup, InputStream)

com.scytl.ov.mixing.commons.configuration.file.FileBasedApplicationConfig.convertToStreamConfig(FileBased ApplicationConfig)
discards result of readLine after checking if it is non-null

Details

BC_VACUOUS_INSTANCEOF: instanceof will always return true

This instanceof test will always return true (unless the value being tested is null). Although this is safe, make sure it isn't an indication of
some misunderstanding or some other logic error. If you really want to test the value for being null, perhaps it would be clearer to do better
to do a null test rather than an instanceof test.

DLS_DEAD_LOCAL_STORE: Dead store to local variable

This instruction assigns a value to a local variable, but the value is not read or used in any subsequent instruction. Often, this indicates an
error, because the value computed is never used.

Note that Sun's javac compiler often generates dead stores for final local variables. Because SpotBugs is a bytecode-based tool, there is no
easy way to eliminate these false positives.

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default platform
encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative API and specify a charset
name or Charset object explicitly.

EI_EXPOSE_REP: May expose internal representation by returning reference to
mutable object

Returning a reference to a mutable object value stored in one of the object's fields exposes the internal representation of the object. If
instances are accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other important
properties, you will need to do something different. Returning a new copy of the object is better approach in many situations.

EI_EXPOSE_REP2: May expose internal representation by incorporating reference to
mutable object
This code stores a reference to an externally mutable object into the internal representation of the object. If instances are accessed by

untrusted code, and unchecked changes to the mutable object would compromise security or other important properties, you will need to do
something different. Storing a copy of the object is better approach in many situations.

RV_DONT_JUST _NULL_CHECK_READLINE: Method discards result of readLine
after checking if it is non-null

The value returned by readLine is discarded after checking to see if the return value is non-null. In almost all situations, if the result is non-
null, you will want to use that non-null value. Calling readLine again will give you a different line.

RV_RETURN_VALUE_IGNORED_BAD_PRACTICE: Method ignores exceptional
return value

This method returns a value that is not checked. The return value should be checked since it can indicate an unusual or unexpected function
execution. For example, the File.delete() method returns false if the file could not be successfully deleted (rather than throwing an
Exception). If you don't check the result, you won't notice if the method invocation signals unexpected behavior by returning an atypical
return value.

NSWEC-7 87

SBSC_USE_STRINGBUFFER_CONCATENATION: Method concatenates strings
using + in a loop

The method seems to be building a String using concatenation in a loop. In each iteration, the String is converted to a
StringBuffer/StringBuilder, appended to, and converted back to a String. This can lead to a cost quadratic in the number of iterations, as the
growing string is recopied in each iteration.

Better performance can be obtained by using a StringBuffer (or StringBuilder in Java 1.5) explicitly.

For example:
// This is bad
String s = "";

for (int i = 0; i < field.length; ++i) {
s = s + field[i];
}

// This is better

StringBuffer buf = new StringBuffer();

for (int i = 0; i < field.length; ++i) {
buf.append(field[i]);

}

String s = buf.toString();

SE_BAD_FIELD: Non-transient non-serializable instance field in serializable class

This Serializable class defines a non-primitive instance field which is neither transient, Serializable, or java.lang.0bject, and does not
appear to implement the Externalizable interface or the readobject () and writeobject () methods. Objects of this class will not be
deserialized correctly if a non-Serializable object is stored in this field.

SS_SHOULD_BE_STATIC: Unread field: should this field be static?

This class contains an instance final field that is initialized to a compile-time static value. Consider making the field static.

file:///tmp/mixnet-verifier_8.html 77

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

* NSWEC-iVote-source-code/mixnet-verifier/mixnet-commons/build/classes/java/main

Metrics

3355 lines of code analyzed, in 128 classes, in 24 packages.

Metric Total Density*
High Priority Warnings 6 1.79
Medium Priority Warnings 86 25.63
Total Warnings 92 27.42

(* Defects per Thousand lines of non-commenting source statements)

Contents

o Bad practice Warnings
» Internationalization Warnings
» Malicious code vulnerability Warnings
¢ Performance Warnings
¢ Dodgy code Warnings
¢ Details
Summary
Warning Type Number
Bad practice Warnings 7
Internationalization Warnings 6
Malicious code vulnerability Warnings 72
Performance Warnings 3
Dodgy code Warnings 4
Total 92
Warnings

Click on a warning row to see full context information.

Bad practice Warnings

NSWEC-7 89

Code Warning

Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.products.ov.mixnet.commons.configuration.file.FileBased ApplicationConfig.convertMixer(FileBasedMixerConfig, Integer,
Integer)

Exceptional return value of java.io.File.mkdirs() ignored in
com.scytl.products.ov.mixnet.commons.configuration.file.FileBased ApplicationConfig.convertVerifier(FileBased VerifierConfig, Integer,
Integer)

Class com.scytl.products.ov.mixnet.commons.concurrent. LoopParallelizerAction defines non-transient non-serializable instance field
_ranges

Class com.scytl.products.ov.mixnet.commons.concurrent.LoopParallelizerAction defines non-transient non-serializable instance field process

Class com.scytl.products.ov.mixnet.commons.concurrent.LoopParallelizerTask defines non-transient non-serializable instance field
_operation

Class com.scytl.products.ov.mixnet.commons.concurrent. LoopParallelizerTask defines non-transient non-serializable instance field _ranges
Class com.scytl.products.ov.mixnet.commons.concurrent.LoopParallelizerTask defines non-transient non-serializable instance field process

Internationalization Warnings

Code Warning

Dm

Found reliance on default encoding in

com.scytl.products.ov.mixnet.commons.configuration.file.FileBased ApplicationConfig.convertToStreamConfig(FileBased ApplicationConfig):
new java.io.FileReader(File)

Found reliance on default encoding in
com.scytl.products.ov.mixnet.commons.io.CommitmentParamsReader.readCommitmentParamsFromStream(ZpSubgroup, InputStream): new
java.io.InputStreamReader(InputStream)

Found reliance on default encoding in com.scytl.products.ov.mixnet.commons.io.ElGamalEncryptedBallotsLoader.loadCSV(ZpSubgroup,
InputStream): new java.io.InputStreamReader(InputStream)

Found reliance on default encoding in
com.scytl.products.ov.mixnet.commons.io.ElgamalPublicKeyReader.readPublicKeyFromStream(InputStream): new
java.io.InputStreamReader(InputStream)

Found reliance on default encoding in new com.scytl.products.ov.mixnet.commons.io.HashCalculatingWriter(OutputStream, MessageDigest):
new com.scytl.products.ov.mixnet.commons.io.HashCalculatingWriter(OutputStream)

Found reliance on default encoding in com.scytl.products.ov.mixnet.commons.tools.RandomOracleHash.getHash(): String.getBytes()

Malicious code vulnerability Warnings

Code Warning

com.scytl.products.ov.mixnet.commons.beans.proofs.HadamardProductProofInitialMessage.getCommitmentPublicB() may expose internal
representation by returning HadamardProductProofInitialMessage._cB

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProof Answer.getExponentsA() may expose internal
representation by returning MultiExponentiationBasicProof Answer._a

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage.getCiphertextsE() may expose internal
representation by returning MultiExponentiationBasicProofInitialMessage._E

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage.getCommitmentPublicB() may expose
internal representation by returning MultiExponentiationBasicProofInitialMessage._cB

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionAnswer.getExponentsB() may expose internal
representation by returning MultiExponentiationReductionAnswer._b

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionInitialMessage.getCiphertextsE() may expose internal
representation by returning MultiExponentiationReductionInitialMessage. E

com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionInitial Message.getCommitmentPublicB() may expose
internal representation by returning MultiExponentiationReductionInitialMessage._cb

com.scytl.products.ov.mixnet.commons.beans.proofs. ShuffleProof.getFirstAnswer() may expose internal representation by returning
ShuffleProof._firstAnswer

com.scytl.products.ov.mixnet.commons.beans.proofs.ShuffleProof.getInitialMessage() may expose internal representation by returning
ShuffleProof._initialMessage

com.scytl.products.ov.mixnet.commons.beans.proofs.Single ValueProductProofAnswer.getExponentsTildeA() may expose internal
representation by returning SingleValueProductProof Answer._tildeA

com.scytl.products.ov.mixnet.commons.beans.proofs.Single ValueProductProofAnswer.getExponentsTildeB() may expose internal
representation by returning SingleValueProductProofAnswer._tildeB

com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProof Answer.getExponentsA() may expose internal representation by returning
ZeroProof Answer._a

com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProof Answer.getExponentsB() may expose internal representation by returning

NSWEC-7 90

ZeroProof Answer._b

com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProofInitialMessage.getCommitmentPublicD() may expose internal representation
by returning ZeroProofInitialMessage._cD

com.scytl.products.ov.mixnet.commons.beans.ShuffleOutput.getExponents() may expose internal representation by returning
ShuffleOutput._exponents

com.scytl.products.ov.mixnet.commons.beans. WarmUpOutput.getRandomExponents() may expose internal representation by returning
WarmUpOutput._randomExponents

com.scytl.products.ov.mixnet.commons.proofs.bg.commitments. CommitmentParams.getG() may expose internal representation by returning
CommitmentParams._g

com.scytl.products.ov.mixnet.commons.proofs.bg.commitments.PrivateCommitment.getM() may expose internal representation by returning
PrivateCommitment._exponents

new com.scytl.products.ov.mixnet.commons.beans.proofs.HadamardProductProofInitialMessage(PublicCommitment[], int) may expose
internal representation by storing an externally mutable object into HadamardProductProofInitialMessage._cB

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProof Answer(Exponent[], Exponent, Exponent,
Exponent, Randomness) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProof Answer._a

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PrivateCommitment,
PrivateCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage._E

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PublicCommitment,
PublicCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage. E

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationBasicProofInitialMessage(PublicCommitment,
PublicCommitment[], Ciphertext[], int) may expose internal representation by storing an externally mutable object into
MultiExponentiationBasicProofInitialMessage._cB

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationBasicProofInitialMessage, MultiExponentiationBasicProofAnswer) may expose internal representation by storing an
externally mutable object into MultiExponentiationReductionAnswer._b

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationBasicProofInitialMessage, MultiExponentiationBasicProofAnswer, MultiExponentiationReductionInitialMessage,
MultiExponentiationReductionAnswer) may expose internal representation by storing an externally mutable object into
MultiExponentiationReductionAnswer._b

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionAnswer(Exponent[], Exponent,
MultiExponentiationReductionInitialMessage, MultiExponentiationReductionAnswer) may expose internal representation by storing an
externally mutable object into MultiExponentiationReductionAnswer._b

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PrivateCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into MultiExponentiationReductionInitialMessage._E

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PublicCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into MultiExponentiationReductionInitialMessage._E

new com.scytl.products.ov.mixnet.commons.beans.proofs.MultiExponentiationReductionInitialMessage(PublicCommitment[], Ciphertext[],
int) may expose internal representation by storing an externally mutable object into MultiExponentiationReductionInitialMessage._cb

new com.scytl.products.ov.mixnet.commons.beans.proofs.ShuffleProof(PublicCommitment[], PublicCommitment[],
ShuffleProofSecondAnswer) may expose internal representation by storing an externally mutable object into ShuffleProof._firstAnswer
new com.scytl.products.ov.mixnet.commons.beans.proofs.ShuffleProof(PublicCommitment[], PublicCommitment[],
ShuffleProofSecondAnswer) may expose internal representation by storing an externally mutable object into ShuffleProof._initialMessage
com.scytl.products.ov.mixnet.commons.beans.proofs.ShuffleProof$Builder.withFirstAnswer(PublicCommitment[]) may expose internal
representation by storing an externally mutable object into ShuffleProof$Builder._firstAnswer
com.scytl.products.ov.mixnet.commons.beans.proofs.ShuffleProof$Builder.withInitialMessage(PublicCommitment[]) may expose internal
representation by storing an externally mutable object into ShuffleProof$Builder._initialMessage

new com.scytl.products.ov.mixnet.commons.beans.proofs.SingleValueProductProof Answer(Exponent[], Exponent[], Exponent, Exponent)
may expose internal representation by storing an externally mutable object into SingleValueProductProofAnswer._tildeA

new com.scytl.products.ov.mixnet.commons.beans.proofs.SingleValueProductProof Answer(Exponent[], Exponent[], Exponent, Exponent)
may expose internal representation by storing an externally mutable object into SingleValueProductProofAnswer._tildeB

new com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProofAnswer(Exponent[], Exponent[], Exponent, Exponent, Exponent) may
expose internal representation by storing an externally mutable object into ZeroProofAnswer._a

new com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProof Answer(Exponent[], Exponent[], Exponent, Exponent, Exponent) may
expose internal representation by storing an externally mutable object into ZeroProofAnswer._b

new com.scytl.products.ov.mixnet.commons.beans.proofs.ZeroProofInitialMessage(PublicCommitment, PublicCommitment,
PublicCommitment[], int) may expose internal representation by storing an externally mutable object into ZeroProofInitialMessage._cD
new com.scytl.products.ov.mixnet.commons.beans.ShuffleOutput(Permutation, Randomness[], Object) may expose internal representation
by storing an externally mutable object into ShuffleOutput._exponents

new com.scytl.products.ov.mixnet.commons.beans. WarmUpOutput(Randomness[], List) may expose internal representation by storing an
externally mutable object into WarmUpOutput._randomExponents

NSWEC-7 91

new com.scytl.products.ov.mixnet.commons.concurrent.processor. AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._B

new com.scytl.products.ov.mixnet.commons.concurrent.processor. AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._E

new com.scytl.products.ov.mixnet.commons.concurrent.processor.AOProcessor(Ciphertext[], Ciphertext[][], Exponent[], CiphertextTools,
int) may expose internal representation by storing an externally mutable object into AOProcessor._Ex

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EncryptConcurrentCalculatorProcessor(Randomness[], List,
Cryptosystem, ZpSubgroup) may expose internal representation by storing an externally mutable object into
EncryptConcurrentCalculatorProcessor._randomExponents

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EncryptRaising ToRandomProcessor(Ciphertext[], Exponent[],
Randomness[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._E

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EncryptRaising ToRandomProcessor(Ciphertext[], Exponent][],
Randomness[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._b

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EncryptRaising ToRandomProcessor(Ciphertext[], Exponent][],
Randomness[], Cryptosystem) may expose internal representation by storing an externally mutable object into
EncryptRaisingToRandomProcessor._tau

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
BiglInteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._a

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
BiglInteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._evalC

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
BiglInteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._vandermondeOmega

new com.scytl.products.ov.mixnet.commons.concurrent.processor.EvaluatorProcessor(Ciphertext[], int, int, Exponent[][], Ciphertext[][],
Biglnteger, CiphertextTools, Exponent[][]) may expose internal representation by storing an externally mutable object into
EvaluatorProcessor._vecC

new com.scytl.products.ov.mixnet.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._C

new com.scytl.products.ov.mixnet.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._E

new com.scytl.products.ov.mixnet.commons.concurrent.processor.InterpolatorProcessor(Ciphertext[], Ciphertext[], Exponent[][],
CiphertextTools) may expose internal representation by storing an externally mutable object into InterpolatorProcessor._e

new com.scytl.products.ov.mixnet.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess(ZpGroupElement[],
Exponent[], CommitmentParams, MultiExponentiation) may expose internal representation by storing an externally mutable object into
LimMultiExpoConcurrentCalculatorProcess._base

new com.scytl.products.ov.mixnet.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess(ZpGroupElement][],
Exponent[], CommitmentParams, MultiExponentiation) may expose internal representation by storing an externally mutable object into
LimMultiExpoConcurrentCalculatorProcess._exponents

new com.scytl.products.ov.mixnet.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by storing an
externally mutable object into NextCiphertextsAndCAPrimeProcessor._cA

new com.scytl.products.ov.mixnet.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by storing an
externally mutable object into NextCiphertextsAndCAPrimeProcessor._cAprime

new com.scytl.products.ov.mixnet.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by storing an
externally mutable object into NextCiphertextsAndCAPrimeProcessor._ciphertexts

new com.scytl.products.ov.mixnet.commons.concurrent.processor.NextCiphertextsAndCAPrimeProcessor(Ciphertext[][],
PrivateCommitment[], Ciphertext[][], int, PrivateCommitment[], Exponent, BigInteger, int) may expose internal representation by storing an
externally mutable object into NextCiphertextsAndCAPrimeProcessor._nextCiphertexts

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PreComputationCalculatorProcessor(ZpGroupElement[], Randomness[],
Cryptosystem) may expose internal representation by storing an externally mutable object into
PreComputationCalculatorProcessor._arrayOfldentityElement

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PreComputationCalculatorProcessor(ZpGroupElement[], Randomness[],
Cryptosystem) may expose internal representation by storing an externally mutable object into
PreComputationCalculatorProcessor._requiredRandomExponents

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PrivateAndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation by
storing an externally mutable object into PrivateAndPublicCommitmentProcessor._exponents

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PrivateAndPublicCommitmentProcessor(PrivateCommitment[],

NSWEC-7 92

PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation by
storing an externally mutable object into PrivateAndPublicCommitmentProcessor._privateCommitments

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PrivateAndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation by
storing an externally mutable object into PrivateAndPublicCommitmentProcessor._publicCommitments

new com.scytl.products.ov.mixnet.commons.concurrent.processor.Private AndPublicCommitmentProcessor(PrivateCommitment[],
PublicCommitment[], Exponent[][], Exponent[], CommitmentParams, MultiExponentiation, int) may expose internal representation by
storing an externally mutable object into PrivateAndPublicCommitmentProcessor._r

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PublicCommitmentCalculatorProcess(PublicCommitment([],
PrivateCommitment[]) may expose internal representation by storing an externally mutable object into
PublicCommitmentCalculatorProcess._privateCommitments

new com.scytl.products.ov.mixnet.commons.concurrent.processor.PublicCommitmentCalculatorProcess(PublicCommitment([],
PrivateCommitment[]) may expose internal representation by storing an externally mutable object into
PublicCommitmentCalculatorProcess._publicCommitments

new com.scytl.products.ov.mixnet.commons.homomorphic.impl.GjosteenElGamal(ZpSubgroup, Exponent[]) may expose internal
representation by storing an externally mutable object into GjosteenElGamal._privateKey

new com.scytl.products.ov.mixnet.commons.homomorphic.impl.GjosteenElGamalPlaintext(ZpGroupElement[]) may expose internal
representation by storing an externally mutable object into GjosteenElGamalPlaintext._m

new com.scytl.products.ov.mixnet.commons.mathematical.tools.LUDecomposition(Exponent[][], BigInteger) may expose internal
representation by storing an externally mutable object into LUDecomposition._lu

new com.scytl.products.ov.mixnet.commons.proofs.bg.commitments. CommitmentParams(ZpSubgroup, ZpGroupElement,
ZpGroupElement[]) may expose internal representation by storing an externally mutable object into CommitmentParams._g

Performance Warnings

Code Warning

com.scytl.products.ov.mixnet.commons.io.ciphertext.CiphertextSerializer.serialize(Ciphertext, JsonGenerator, SerializerProvider)
concatenates strings using + in a loop

Unread field: com.scytl.products.ov.mixnet.commons.io.ElGamalEncryptedBallotEntryParser. PATTERN; should this field be static?

Unread field: com.scytl.products.ov.mixnet.commons.tools.UniversalElGamalEncryptionParamsGenerator. CERTAINTY_LEVEL; should
this field be static?

Dodgy code Warnings

Code Warning
instanceof will always return true for all non-null values in
com.scytl.products.ov.mixnet.commons.concurrent.processor.LimMultiExpoConcurrentCalculatorProcess.getZpGroup(ZpSubgroup), since
all com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup are instances of com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup
instanceof will always return true for all non-null values in
com.scytl.products.ov.mixnet.commons.proofs.bg.commitments.CommitmentParams.extractZpGroup(ZpSubgroup), since all
com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup are instances of com.scytl.cryptolib.mathematical.groups.impl.ZpSubgroup
Dead store to reconstructedZpGroup in
com.scytl.products.ov.mixnet.commons.io.CommitmentParamsReader.readCommitmentParamsFromStream(ZpSubgroup, InputStream)
com.scytl.products.ov.mixnet.commons.configuration.file.FileBased ApplicationConfig.convertToStreamConfig(FileBased ApplicationConfig)
discards result of readLine after checking if it is non-null

Details

BC_VACUOUS_INSTANCEQF: instanceof will always return true

This instanceof test will always return true (unless the value being tested is null). Although this is safe, make sure it isn't an indication of some
misunderstanding or some other logic error. If you really want to test the value for being null, perhaps it would be clearer to do better to do a null test
rather than an instanceof test.

DLS_DEAD_LOCAL_STORE: Dead store to local variable

This instruction assigns a value to a local variable, but the value is not read or used in any subsequent instruction. Often, this indicates an error,
because the value computed is never used.

Note that Sun's javac compiler often generates dead stores for final local variables. Because SpotBugs is a bytecode-based tool, there is no easy way
to eliminate these false positives.

NSWEC-7 93

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default platform encoding is
suitable. This will cause the application behaviour to vary between platforms. Use an alternative API and specify a charset name or Charset object
explicitly.

EI_EXPOSE_REP: May expose internal representation by returning reference to mutable
object
Returning a reference to a mutable object value stored in one of the object's fields exposes the internal representation of the object. If instances are

accessed by untrusted code, and unchecked changes to the mutable object would compromise security or other important properties, you will need to
do something different. Returning a new copy of the object is better approach in many situations.

EI_EXPOSE_REP2: May expose internal representation by incorporating reference to
mutable object
This code stores a reference to an externally mutable object into the internal representation of the object. If instances are accessed by untrusted

code, and unchecked changes to the mutable object would compromise security or other important properties, you will need to do something
different. Storing a copy of the object is better approach in many situations.

RV_DONT_JUST_NULL_CHECK_READLINE: Method discards result of readLine after
checking if it is non-null

The value returned by readLine is discarded after checking to see if the return value is non-null. In almost all situations, if the result is non-null, you
will want to use that non-null value. Calling readLine again will give you a different line.

RV_RETURN_VALUE_IGNORED_BAD_PRACTICE: Method ignores exceptional return
value
This method returns a value that is not checked. The return value should be checked since it can indicate an unusual or unexpected function

execution. For example, the File.delete() method returns false if the file could not be successfully deleted (rather than throwing an Exception). If
you don't check the result, you won't notice if the method invocation signals unexpected behavior by returning an atypical return value.

SBSC_USE_STRINGBUFFER_CONCATENATION: Method concatenates strings using +
in a loop
The method seems to be building a String using concatenation in a loop. In each iteration, the String is converted to a StringBuffer/StringBuilder,

appended to, and converted back to a String. This can lead to a cost quadratic in the number of iterations, as the growing string is recopied in each
iteration.

Better performance can be obtained by using a StringBuffer (or StringBuilder in Java 1.5) explicitly.

For example:

// This is bad

String s = "";

for (int i = 0; i < field.length; ++i) {
s = s + field[i];

}

// This is better

StringBuffer buf = new StringBuffer();

for (int i = 0; i < field.length; ++i) {
buf.append(field[i]);

String s = buf.toString();
SE_BAD_FIELD: Non-transient non-serializable instance field in serializable class
This Serializable class defines a non-primitive instance field which is neither transient, Serializable, or java.lang.0bject, and does not appear to

implement the Externalizable interface or the readobject() and write0object () methods. Objects of this class will not be deserialized correctly
if a non-Serializable object is stored in this field.

SS_SHOULD_BE_STATIC: Unread field: should this field be static?

NSWEC-7 94
This class contains an instance final field that is initialized to a compile-time static value. Consider making the field static.
file:///tmp/mixnet-verifier_9.html 77

NSWEC-7

95

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6

Code analyzed:

o NSWEC-iVote-source-code/online-voting-logging/logging-core/build/classes/java/main

Metrics

202 lines of code analyzed, in 8 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 4 19.80
Total Warnings 4 19.80

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Performance Warnings
¢ Details

Summary

Warning Type Number
Performance Warnings 4

Total 4

Warnings

Click on a warning row to see full context information.

Performance Warnings

NSWEC-7 96

Code Warning

Unread field: com.scytl.products.oscore.logging.core.layout.EscapingPatternLayout.bReplacement; should this field
be static?

Unread field: com.scytl.products.oscore.logging.core.layout.EscapingPatternLayout fReplacement; should this field
be static?

Unread field: com.scytl.products.oscore.logging.core.layout.EscapingPatternLayout nReplacement; should this field
be static?

Unread field: com.scytl.products.oscore.logging.core.layout.EscapingPatternLayout rReplacement; should this field
be static?

Details

SS_SHOULD_BE_STATIC: Unread field: should this field be static?

This class contains an instance final field that is initialized to a compile-time static value. Consider making the field static.

file:///tmp/online-voting-logging_0.html 2/2

NSWEC-7

97

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

¢ NSWEC-iVote-source-code/online-voting-logging/logging-api/build/classes/java/main

Metrics

151 lines of code analyzed, in 13 classes, in 5 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 0.00
Total Warnings 0 0.00

(* Defects per Thousand lines of non-commenting source statements)

Contents

e Details

Summary

Warning Type Number
Total 0

Warnings

Click on a warning row to see full context information.

Details

NSWEC-7

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

¢ NSWEC-iVote-source-code/secure-logger/validator/build/classes/java/main

Metrics

1001 lines of code analyzed, in 23 classes, in 7 packages.

Metric Total Density*
High Priority Warnings 2 2.00
Medium Priority Warnings 1 1.00
Total Warnings 3 3.00

(* Defects per Thousand lines of non-commenting source statements)

Contents
¢ Bad practice Warnings
« Internationalization Warnings
¢ Performance Warnings
¢ Details
Summary
Warning Type Number
Bad practice Warnings 1
Internationalization Warnings 1
Performance Warnings 1
Total 3

Warnings

NSWEC-7 99

Click on a warning row to see full context information.
Bad practice Warnings

Code Warning

Nm The class name com.scytl.slogger.validator.Level shadows the simple name of the superclass org.apache.logdj.Level

Internationalization Warnings

Code Warning

Found reliance on default encoding in com.scytl.slogger.util. LogValidator.main(String[]): new
java.io.FileWriter(String)

Performance Warnings

Code Warning

com.scytl.slogger.validator.LogFilePatternReceiver.initialize() invokes inefficient new Integer(int) constructor; use
Integer.valueOf(int) instead

Details

DM_NUMBER_CTOR: Method invokes inefficient Number constructor; use
static valueOf instead

Using new Integer(int) is guaranteed to always result in a new object whereas Integer.valueof(int) allows caching of
values to be done by the compiler, class library, or JVM. Using of cached values avoids object allocation and the code will
be faster.

Values between -128 and 127 are guaranteed to have corresponding cached instances and using valueOf is approximately
3.5 times faster than using constructor. For values outside the constant range the performance of both styles is the same.

Unless the class must be compatible with JVMs predating Java 1.5, use either autoboxing or the valueof () method when
creating instances of Long, Integer, Short, Character, and Byte.

DM_DEFAULT_ENCODING: Reliance on default encoding

Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default
platform encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative API
and specify a charset name or Charset object explicitly.

NM_SAME_SIMPLE_NAME_AS_SUPERCLASS: Class names shouldn't
shadow simple name of superclass

This class has a simple name that is identical to that of its superclass, except that its superclass is in a different package (e.g.,
alpha.Foo extends beta.Foo). This can be exceptionally confusing, create lots of situations in which you have to look at

import statements to resolve references and creates many opportunities to accidentally define methods that do not override
methods in their superclasses.

file:///tmp/secure-logger_0.html 2/2

NSWEC-7 100

SpotBugs Report

Project Information

Project:
SpotBugs version: 3.1.6
Code analyzed:

o NSWEC-iVote-source-code/secure-logger/logger/build/classes/java/main

Metrics

1658 lines of code analyzed, in 44 classes, in 11 packages.

Metric Total Density*
High Priority Warnings 0.00
Medium Priority Warnings 2 1.21
Total Warnings 2 1.21

(* Defects per Thousand lines of non-commenting source statements)

Contents

¢ Bad practice Warnings
e Correctness Warnings

¢ Details
Summary
Warning Type Number
Bad practice Warnings 1
Correctness Warnings 1
Total 2
Warnings

Click on a warning row to see full context information.

NSWEC-7 101

Bad practice Warnings

Code Warning
Class com.scytl.slogger.event.SecureLoggingEvent defines non-transient non-serializable instance field
secureMessage

Correctness Warnings

Code Warning

Null passed for non-null parameter of new java.io.File(String) in
com.scytl.slogger.SecureFileAppender.activateOptions()

Details

NP_NULL_PARAM_DEREF: Method call passes null for non-null parameter

This method call passes a null value for a non-null method parameter. Either the parameter is annotated as a parameter that
should always be non-null, or analysis has shown that it will always be dereferenced.

SE_BAD_FIELD: Non-transient non-serializable instance field in serializable
class

This Serializable class defines a non-primitive instance field which is neither transient, Serializable, or java.lang.0bject,
and does not appear to implement the Externalizable interface or the readobject() and write0Object () methods.
Objects of this class will not be deserialized correctly if a non-Serializable object is stored in this field.

file:///tmp/secure-logger_1.html 2/2

